Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Immunol ; 204(4): 868-878, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31915261

RESUMEN

Osteoclasts (OC) originate from either bone marrow (BM)-resident or circulating myeloid OC progenitors (OCP) expressing the receptor CX3CR1. Multiple lines of evidence argue that OCP in homeostasis and inflammation differ. We investigated the relative contributions of BM-resident and circulating OCP to osteoclastogenesis during homeostasis and fracture repair. Using CX3CR1-EGFP/TRAP tdTomato mice, we found CX3CR1 expression in mononuclear cells, but not in multinucleated TRAP+ OC. However, CX3CR1-expressing cells generated TRAP+ OC on bone within 5 d in CX3CR1CreERT2/Ai14 tdTomato reporter mice. To define the role that circulating cells play in osteoclastogenesis during homeostasis, we parabiosed TRAP tdTomato mice (CD45.2) on a C57BL/6 background with wild-type (WT) mice (CD45.1). Flow cytometry (CD45.1/45.2) demonstrated abundant blood cell mixing between parabionts after 2 wk. At 4 wk, there were numerous tdTomato+ OC in the femurs of TRAP tdTomato mice but almost none in WT mice. Similarly, cultured BM stimulated to form OC demonstrated multiple fluorescent OC in cell cultures from TRAP tdTomato mice, but not from WT mice. Finally, flow cytometry confirmed low-level engraftment of BM cells between parabionts but significant engraftment in the spleens. In contrast, during fracture repair, we found that circulating CX3CR1+ cells migrated to bone, lost expression of CX3CR1, and became OC. These data demonstrate that OCP, but not mature OC, express CX3CR1 during both homeostasis and fracture repair. We conclude that, in homeostasis mature OC derive predominantly from BM-resident OCP, whereas during fracture repair, circulating CX3CR1+ cells can become OC.

2.
J Immunol ; 203(1): 105-116, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31109956

RESUMEN

We found that protease-activated receptor 1 (PAR1) was transiently induced in cultured osteoclast precursor cells. Therefore, we examined the bone phenotype and response to resorptive stimuli of PAR1-deficient (knockout [KO]) mice. Bones and bone marrow-derived cells from PAR1 KO and wild-type (WT) mice were assessed using microcomputed tomography, histomorphometry, in vitro cultures, and RT-PCR. Osteoclastic responses to TNF-α (TNF) challenge in calvaria were analyzed with and without a specific neutralizing Ab to the Notch2-negative regulatory region (N2-NRR Ab). In vivo under homeostatic conditions, there were minimal differences in bone mass or bone cells between PAR1 KO and WT mice. However, PAR1 KO myeloid cells demonstrated enhanced osteoclastogenesis in response to receptor activator of NF-κB ligand (RANKL) or the combination of RANKL and TNF. Strikingly, in vivo osteoclastogenic responses of PAR1 KO mice to TNF were markedly enhanced. We found that N2-NRR Ab reduced TNF-induced osteoclastogenesis in PAR1 KO mice to WT levels without affecting WT responses. Similarly, in vitro N2-NRR Ab reduced RANKL-induced osteoclastogenesis in PAR1 KO cells to WT levels without altering WT responses. We conclude that PAR1 functions to limit Notch2 signaling in responses to RANKL and TNF and moderates osteoclastogenic response to these cytokines. This effect appears, at least in part, to be cell autonomous because enhanced osteoclastogenesis was seen in highly purified PAR1 KO osteoclast precursor cells. It is likely that this pathway is involved in regulating the response of bone to diseases associated with inflammatory signals.


Asunto(s)
Enfermedades Óseas/inmunología , Inflamación/inmunología , Osteoclastos/fisiología , Receptor Notch2/metabolismo , Receptor PAR-1/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis/genética , Ligando RANK/metabolismo , Receptor Notch2/inmunología , Receptor PAR-1/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
3.
J Orthop Res ; 42(6): 1231-1243, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38111181

RESUMEN

Osteoporosis is a chronic disease characterized by reduced bone mass and increased fracture risk, estimated to affect over 10 million people in the United States alone. Drugs used to treat bone loss often come with significant limitations and/or long-term safety concerns. Proteoglycan-4 (PRG4, also known as lubricin) is a mucin-like glycoprotein best known for its boundary lubricating function of articular cartilage. In more recent years, it has been shown that PRG4 has anti-inflammatory properties, contributes to the maintenance of subchondral bone integrity, and patients with PRG4 mutations are osteopenic. However, it remains unknown how PRG4 impacts mechanical and material properties of bone. Therefore, our objective was to perform a phenotyping study of bone in a Prg4 gene trap (GT) mouse (PRG4 deficient). We found that femurs of Prg4 GT mice have altered mechanical, structural, and material properties relative to wildtype littermates. Additionally, Prg4 GT mice have a greater number of calvarial osteoclasts than wildtype mice, but do not have a notable inflammatory serum profile. Finally, Prg4 GT mice do not have an altered rate of bone formation, and exogenous recombinant human PRG4 (rhPRG4) administration inhibited osteoclastogenesis in vitro, suggesting that the skeletal phenotype may be due to changes in bone resorption. Overall, this work demonstrates that PRG4 deficiency affects several integral properties of bone structure, mechanics, and skeletal cell activity, and provides the foundation and insight toward future work evaluating PRG4 as a potential therapeutic target in treating bone loss.


Asunto(s)
Osteoclastos , Osteogénesis , Proteoglicanos , Animales , Osteogénesis/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Ratones , Humanos , Masculino , Ratones Endogámicos C57BL , Cráneo , Femenino , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Fémur/efectos de los fármacos
4.
Nat Commun ; 14(1): 5170, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620306

RESUMEN

Antibodies play a critical role in protection against influenza; yet titers and viral neutralization represent incomplete correlates of immunity. Instead, the ability of antibodies to leverage the antiviral power of the innate immune system has been implicated in protection from and clearance of influenza infection. Here, post-hoc analysis of the humoral immune response to influenza is comprehensively profiled in a cohort of vaccinated older adults (65 + ) monitored for influenza infection during the 2012/2013 season in the United States (NCT: 01427309). While robust humoral immune responses arose against the vaccine and circulating strains, influenza-specific antibody effector profiles differed in individuals that later became infected with influenza, who are deficient in NK cell activating antibodies to both hemagglutinin and neuraminidase, compared to individuals who remained uninfected. Furthermore, NK cell activation was strongly associated with the NK cell senescence marker CD57, arguing for the need for selective induction of influenza-specific afucosylated NK activating antibodies in older adults to achieve protection. High dose vaccination, currently used for older adults, was insufficient to generate this NK cell-activating humoral response. Next generation vaccines able to selectively bolster NK cell activating antibodies may be required to achieve protection in the setting of progressively senescent NK cells.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Humanos , Anciano , Gripe Humana/prevención & control , Inmunidad Humoral , Anticuerpos Antivirales , Células Asesinas Naturales
5.
J Bone Miner Res ; 36(6): 1104-1116, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33567098

RESUMEN

Sexual dimorphism of the skeleton is well documented. At maturity, the male skeleton is typically larger and has a higher bone density than the female skeleton. However, the underlying mechanisms for these differences are not completely understood. In this study, we examined sexual dimorphism in the formation of osteoclasts between cells from female and male mice. We found that the number of osteoclasts in bones was greater in females. Similarly, in vitro osteoclast differentiation was accelerated in female osteoclast precursor (OCP) cells. To further characterize sex differences between female and male osteoclasts, we performed gene expression profiling of cultured, highly purified, murine bone marrow OCPs that had been treated for 3 days with macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). We found that 125 genes were differentially regulated in a sex-dependent manner. In addition to genes that are contained on sex chromosomes, transcriptional sexual dimorphism was found to be mediated by genes involved in innate immune and inflammatory response pathways. Furthermore, the NF-κB-NFATc1 axis was activated earlier in female differentiating OCPs, which partially explains the differences in transcriptomic sexual dimorphism in these cells. Collectively, these findings identify multigenic sex-dependent intrinsic difference in differentiating OCPs, which results from an altered response to osteoclastogenic stimulation. In humans, these differences could contribute to the lower peak bone mass and increased risk of osteoporosis that females demonstrate relative to males. © 2021 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteoclastos , Caracteres Sexuales , Animales , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Femenino , Factor Estimulante de Colonias de Macrófagos , Masculino , Ratones , Factores de Transcripción NFATC , Osteogénesis , Ligando RANK
6.
Bone ; 38(5): 678-85, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16309985

RESUMEN

Receptor activator of NF-kappaB ligand (RANKL) and interleukin-1 (IL-1) individually plays a critical role in the differentiation and activation of osteoclasts in bone. In addition, both RANKL and IL-1 activate similar signal transduction pathways including p38 MAP kinase and c-Jun NH(2) terminal kinase (JNK). We examined if endogenously produced IL-1 influenced osteoclast-like cell (OCL) formation in murine bone marrow and bone marrow monocyte (BMM) cultures that were stimulated with M-CSF and RANKL. RANKL stimulated OCL formation in a dose-dependent manner in bone marrow cultures, and this response was significantly inhibited by IL-1 RA (100 ng/ml), a specific IL-1 antagonist. Interleukin-1 further increased OCL formation in BMM cultures that were treated with M-CSF (30 ng/ml) and RANKL (1, 3, 10 and 30 ng/ml). In addition, BMM cultures from IL-1 type I receptor-deficient mice, which do not respond to IL-1, demonstrated significantly less OCL formation compared to wild-type BMM cultures. We examined the time course and dose response of IL-1alpha protein expression by ELISA in BMM cultures that were treated with or without M-CSF and RANKL. RANKL dose dependently stimulated IL-1alpha protein significantly (up to 46%) in 6-day cultures. The interaction of RANKL and IL-1 on osteoclastogenesis did not appear significantly dependent on prostaglandin synthesis since PGE(2) expression in the conditioned medium of BMM cultures was nearly undetectable and the PGHS-2 specific inhibitor, NS-398, was without effect. We also investigated the effect of IL-1 on p38 MAP kinase and JNK in BMM cultures. The combination of RANKL and IL-1 had additive effects on JNK but not p38 MAP kinase compared to results in cultures treated with RANKL or IL-1 alone. In addition, SP600125, a specific JNK inhibitor, markedly reduced OCL formation in BMM cultures that were treated with RANKL or the combination of RANKL and IL-1. These findings demonstrate that endogenously produced IL-1 augments the response of bone marrow cells to RANKL, and this effect appears mediated by mechanisms that are associated with enhancement of JNK activity.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Proteínas Portadoras/farmacología , Diferenciación Celular , Interleucina-1/fisiología , Glicoproteínas de Membrana/farmacología , Osteoclastos/citología , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-1/antagonistas & inhibidores , Interleucina-1/farmacología , MAP Quinasa Quinasa 4/antagonistas & inhibidores , MAP Quinasa Quinasa 4/metabolismo , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Ratones Endogámicos C57BL , Osteoclastos/metabolismo , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Sialoglicoproteínas/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Endocrinology ; 157(8): 3058-69, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27267711

RESUMEN

Runt-related transcription factor 1 (Runx1), a master regulator of hematopoiesis, is expressed in preosteoclasts. Previously we evaluated the bone phenotype of CD11b-Cre Runx1(fl/fl) mice and demonstrated enhanced osteoclasts and decreased bone mass in males. However, an assessment of the effects of Runx1 deletion in female osteoclast precursors was impossible with this model. Moreover, the role of Runx1 in myeloid cell differentiation into other lineages is unknown. Therefore, we generated LysM-Cre Runx1(fl/fl) mice, which delete Runx1 equally (∼80% deletion) in myeloid precursor cells from both sexes and examined the capacity of these cells to differentiate into osteoclasts and phagocytic and antigen-presenting cells. Both female and male LysM-Cre Runx1(fl/fl) mice had decreased trabecular bone mass (72% decrease in bone volume fraction) and increased osteoclast number (2-3 times) (P < .05) without alteration of osteoblast histomorphometric indices. We also demonstrated that loss of Runx1 in pluripotential myeloid precursors with LysM-Cre did not alter the number of myeloid precursor cells in bone marrow or their ability to differentiate into phagocytizing or antigen-presenting cells. This study demonstrates that abrogation of Runx1 in multipotential myeloid precursor cells significantly and specifically enhanced the ability of receptor activator of nuclear factor-κB ligand to stimulate osteoclast formation and fusion in female and male mice without affecting other myeloid cell fates. In turn, increased osteoclast activity in LysM-Cre Runx1(fl/fl) mice likely contributed to a decrease in bone mass. These dramatic effects were not due to increased osteoclast precursors in the deleted mutants and argue that inhibition of Runx1 in multipotential myeloid precursor cells is important for osteoclast formation and function.


Asunto(s)
Células Presentadoras de Antígenos/fisiología , Diferenciación Celular/genética , Transdiferenciación Celular/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/fisiología , Células Progenitoras Mieloides/fisiología , Osteoclastos/fisiología , Fagocitos/fisiología , Animales , Resorción Ósea/genética , Células Cultivadas , Femenino , Hematopoyesis/genética , Masculino , Ratones , Ratones Transgénicos
8.
J Gerontol A Biol Sci Med Sci ; 70(10): 1289-95, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26215633

RESUMEN

BACKGROUND: A proinflammatory state has been associated with several age-associated conditions; however, the inflammatory mechanisms of delirium remain poorly characterized. METHODS: Using the Successful Aging after Elective Surgery Study of adults age ≥70 undergoing major noncardiac surgery, 12 cytokines were measured at four timepoints: preoperative, postanesthesia care unit, postoperative day 2 (POD2) and 30 days later (POD1M). We conducted a nested, longitudinal matched (on age, sex, surgery type, baseline cognition, vascular comorbidity, and Apolipoprotein E genotype) case-control study: delirium cases and no-delirium controls were selected from the overall cohort (N = 566; 24% delirium). Analyses were independently conducted in discovery, replication, and pooled cohorts (39, 36, 75 matched pairs, respectively). Nonparametric signed-rank tests evaluating differences in cytokine levels between matched pairs were used to identify delirium-associated cytokines. RESULTS: In the discovery and replication cohorts, matching variables were similar in cases and controls. Compared to controls, cases had (*p < .05, **p < .01) significantly higher interleukin-6 on POD2 in the discovery, replication, and pooled cohorts (median difference [pg/mL] 50.44**, 20.17*, 39.35**, respectively). In the pooled cohort, cases were higher than controls for interleukin-2 (0.99*, 0.77*, 1.07**, 0.73* at preoperative, postanesthesia care unit, POD2, POD1M, respectively), vascular endothelial growth factor (4.10* at POD2), and tumor necrosis factor-alpha (3.10* at POD1M), while cases had lower interleukin-12 at POD1M (-4.24*). CONCLUSIONS: In this large, well-characterized cohort assessed at multiple timepoints, we observed an inflammatory signature of delirium involving elevated interleukin-6 at POD2, which may be an important disease marker for delirium. We also observed preliminary evidence for involvement of other cytokines.


Asunto(s)
Citocinas/sangre , Delirio/etiología , Procedimientos Quirúrgicos Electivos , Complicaciones Posoperatorias/etiología , Anciano , Estudios de Casos y Controles , Delirio/sangre , Femenino , Humanos , Masculino , Complicaciones Posoperatorias/sangre , Estudios Prospectivos , Riesgo
9.
Endocrinology ; 144(8): 3524-31, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12865334

RESUMEN

We examined the direct effects of IL-7 on osteoclastogenesis in murine bone marrow cultures, using cells from wild-type and IL-7- and IL-7 receptor (IL-7R)-deficient mice. IL-7 inhibited osteoclast-like cells (OCL) formation in macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappaB ligand (RANKL)-stimulated (both at 30 ng/ml) murine bone marrow cultures. Significant inhibitory effects were seen at 1 ng/ml (57%) and 10 ng/ml (86%). IL-7 also inhibited (P < 0.05) OCL formation in bone marrow cultures that were stimulated with vitamin D(3) (10(-8) M, 60%), bovine PTH (bPTH) (100 ng/ml, 54%), or RANKL alone (30 ng/ml, 50%). IL-7 (10 ng/ml) increased expression of the B lymphocyte marker B220 from 40-86% of total nonadherent cells in cultures treated with M-CSF and RANKL. Bone marrow cells from IL-7-deficient [IL-7 knockout (KO)] mice showed a significant (P < 0.05) increase in tartrate-resistant acid phosphatase(+) OCL numbers in cultures that were stimulated with vitamin D(3) (136 +/- 13.3%), bPTH (196 +/- 18.8%), or M-CSF and RANKL (160 +/- 7.2%). In contrast, in vitro osteoclast formation in bone marrow from IL-7R-deficient (IL-7R KO) mice showed a significant decrease in tartrate-resistant acid phosphatase(+) OCL numbers in cultures that were stimulated with vitamin D(3), PTH, RANKL, or M-CSF and RANKL. These results demonstrate that there are differences in the mechanisms regulating OCL formation between IL-7 KO and IL-7R KO cells. It seems that IL-7 is a direct inhibitor of OCL formation in vitro, based on results of adding IL-7 to wild-type cultures and the responses of IL-7 KO cells. It is unknown why IL-7R KO cells behave differently from IL-7 KO cells in vitro. However, it is possible that additional cytokines interact with IL-7R and that loss of these signals contributes to the responses of IL-7R KO cells. Alternatively, IL-7 may interact with multiple receptors.


Asunto(s)
Diferenciación Celular , Interleucina-7/farmacología , Osteoclastos/citología , Fosfatasa Ácida/análisis , Animales , Linfocitos B/citología , Células de la Médula Ósea/citología , Proteínas Portadoras/farmacología , Recuento de Células , Células Cultivadas , Colecalciferol/farmacología , Ensayo de Unidades Formadoras de Colonias , Cruzamientos Genéticos , Citometría de Flujo , Granulocitos , Interleucina-7/deficiencia , Interleucina-7/fisiología , Isoenzimas/análisis , Factor Estimulante de Colonias de Macrófagos/farmacología , Macrófagos , Glicoproteínas de Membrana/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Hormona Paratiroidea/farmacología , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B , Fosfatasa Ácida Tartratorresistente
10.
Bone ; 32(6): 581-90, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12810165

RESUMEN

We examined the osteoclastogenic potential of murine bone marrow cells that were fractionated according to their expression of the surface antigen CD45R. Osteoclast-like cells (OCL) with many authentic osteoclast characteristics readily formed in purified CD45R(+) murine bone marrow cell cultures after treatment with receptor activator of nuclear factor kappaB ligand (RANKL) and M-CSF. Ovariectomy (Ovx) caused a 1.5- to 2-fold increase in OCL number in unfractionated and CD45R(+) murine bone marrow cell cultures without affecting OCL formation in CD45R(-) marrow cells. Limiting dilution assays confirmed that Ovx caused an increase in osteoclast precursor cell number in CD45R(+) but not CD45R(-) cells. Mice deficient in the type 1 IL-1 receptor (IL-1R1 KO) do not lose bone mass after Ovx. We found that unfractionated, CD45R(+), and CD45R(-) bone marrow cells from IL-1R1 KO mice showed no increase in OCL formation in vitro after Ovx. In both the wild-type (WT) and the IL-1R1 KO mice Ovx was associated with a 2-fold increase in pre-B-lymphocytes. About 1.3-3.5% of murine marrow cells expressed surface RANK (the receptor for RANKL) while about 11.9-15% of murine bone marrow cells expressed c-Fms (the receptor for M-CSF). There was little effect of Ovx on cells expressing either RANK or c-Fms. These results demonstrate that CD45R expression identifies a subset of murine bone marrow cells whose ability to form OCL in vivo is regulated by estrogen in WT but not IL-1R1 KO cells. The effects of estrogen on bone mass may be related to these responses.


Asunto(s)
Estrógenos/metabolismo , Células Precursoras de Granulocitos/metabolismo , Antígenos Comunes de Leucocito/análisis , Osteoclastos/metabolismo , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Bovinos , Células Cultivadas , Estrógenos/genética , Femenino , Células Precursoras de Granulocitos/citología , Antígenos Comunes de Leucocito/biosíntesis , Antígenos Comunes de Leucocito/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Osteoclastos/citología , Ovariectomía , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Ratas , Receptores de Interleucina-1/deficiencia , Receptores de Interleucina-1/genética
11.
J Bone Miner Res ; 28(3): 618-26, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23044658

RESUMEN

We examined the effects that ovariectomy had on sclerostin mRNA and protein levels in the bones of 8-week-old mice that were either sham-operated (SHAM) or ovariectomized (OVX) and then euthanized 3 or 6 weeks later. In this model, bone loss occurred between 3 and 5 weeks postsurgery. In calvaria, ovariectomy significantly decreased sclerostin mRNA levels at 6 weeks postsurgery (by 52%) but had no significant effect at 3 weeks. In contrast, sclerostin mRNA levels were significantly lower in OVX femurs at 3 weeks postsurgery (by 53%) but equal to that of SHAM at 6 weeks. The effects of ovariectomy on sclerostin were not a global response of osteocytes because they were not mimicked by changes in the mRNA levels for two other relatively osteocyte-specific genes: DMP-1 and FGF-23. Sclerostin protein decreased by 83% and 60%, at 3 and 6 weeks postsurgery in calvaria, respectively, and by 38% in lumbar vertebrae at 6 weeks. We also detected decreases in sclerostin by immunohistochemistry in cortical osteocytes of the humerus at 3 weeks postsurgery. However, there were no significant effects of ovariectomy on sclerostin protein in femurs or on serum sclerostin at 3 and 6 weeks postsurgery. These results demonstrate that ovariectomy has variable effects on sclerostin mRNA and protein in mice, which are dependent on the bones examined and the time after surgery. Given the discrepancy between the effects of ovariectomy on serum sclerostin levels and sclerostin mRNA and protein levels in various bones, these results argue that, at least in mice, serum sclerostin levels may not accurately reflect changes in the local production of sclerostin in bones. Additional studies are needed to evaluate whether this is also the case in humans.


Asunto(s)
Glicoproteínas/metabolismo , Ovariectomía , Proteínas Adaptadoras Transductoras de Señales , Animales , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Femenino , Factor-23 de Crecimiento de Fibroblastos , Glicoproteínas/sangre , Glicoproteínas/genética , Péptidos y Proteínas de Señalización Intercelular , Ratones , Ratones Endogámicos C57BL , ARN Mensajero/metabolismo , Tomografía Computarizada por Rayos X
12.
J Immunol ; 169(5): 2374-80, 2002 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-12193704

RESUMEN

We examined the ability of 1,25 (OH)(2) vitamin D(3) (Vit D) to stimulate osteoclast-like cell (OCL) formation in cocultures of spleen cells and primary calvarial osteoblasts from wild-type (WT) and IL-1R type 1-deficient (knockout; KO) mice. Vit D dose dependently increased OCL in cocultures containing WT osteoblasts. In contrast, there was a 90% reduction in OCL numbers in cocultures containing KO osteoblasts. In cocultures with either WT or KO osteoblasts, treatment with Vit D increased receptor activator of NF-kappaB ligand mRNA by 17-, 19-, or 3.5-fold, respectively. Vit D decreased osteoprotegerin mRNA to undetectable in all groups. Intracellular IL-1alpha protein increased after Vit D treatment in cocultures containing WT, but not KO osteoblasts. We also examined direct effects of Vit D, IL-1alpha, and their combination on gene expression in primary osteoblasts. In WT cells, Vit D and IL-1 stimulated receptor activator of NF-kappaB ligand mRNA expression by 3- and 4-fold, respectively, and their combination produced a 7-fold increase. Inhibition of osteoprotegerin mRNA in WT cells was partial with either agent alone and greatest with their combination. In KO cells, only Vit D stimulated a response. IL-1 alone increased IL-1alpha protein expression in WT osteoblasts. However, in combination with Vit D, there was a synergistic response (100-fold increase). In KO cultures, there were no effects of IL-1, Vit D, or their combination on IL-1alpha protein. These results demonstrate interactions between IL-1 and Vit D in primary osteoblasts that appear important in both regulation of IL-1alpha production and the ability of Vit D to support osteoclastogenesis.


Asunto(s)
Calcitriol/farmacología , Proteínas Portadoras/biosíntesis , Glicoproteínas/metabolismo , Interleucina-1/biosíntesis , Glicoproteínas de Membrana/biosíntesis , Osteoblastos/metabolismo , Osteoclastos/citología , Osteogénesis/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/metabolismo , Bazo/citología , Adyuvantes Inmunológicos/biosíntesis , Adyuvantes Inmunológicos/fisiología , Animales , Calcitriol/antagonistas & inhibidores , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Células Cultivadas , Técnicas de Cocultivo , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/genética , Proteína Antagonista del Receptor de Interleucina 1 , Interleucina-1/antagonistas & inhibidores , Interleucina-1/genética , Interleucina-1/fisiología , Ligandos , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/fisiología , Osteoclastos/efectos de los fármacos , Osteoclastos/fisiología , Osteogénesis/inmunología , Osteoprotegerina , Ligando RANK , ARN Mensajero/biosíntesis , Receptor Activador del Factor Nuclear kappa-B , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/genética , Receptores del Factor de Necrosis Tumoral , Sialoglicoproteínas/farmacología , Bazo/efectos de los fármacos , Bazo/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA