Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 112(38): E5343-50, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26354122

RESUMEN

The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host.


Asunto(s)
Variación Antigénica , Eimeria tenella/genética , Eimeria tenella/inmunología , Animales , Antígenos de Protozoos/inmunología , Secuencia de Bases , Pollos/parasitología , Coccidiosis/parasitología , Cruzamientos Genéticos , Heces , Variación Genética , Genética de Población , Genotipo , Geografía , Datos de Secuencia Molecular , Oocistos , Filogenia , Plasmodium/genética , Plasmodium/inmunología , Polimorfismo de Nucleótido Simple , Enfermedades de las Aves de Corral/parasitología , Vacunas Antiprotozoos
2.
BMC Vet Res ; 12: 86, 2016 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-27259544

RESUMEN

BACKGROUND: Chicken is fast becoming the world's most consumed meat. As a consequence poultry health is more important now than ever before, with pathogens of chickens recognised as serious threats to food security. One such threat are Eimeria species parasites, protozoa which can cause the disease coccidiosis. Eimeria can compromise economic poultry production and chicken welfare, and have serious consequences for poor livestock keepers. Seven Eimeria species that infect chickens are recognised with a global enzootic distribution. More recently three cryptic Operational Taxonomic Units (OTUx, y and z) have been described in populations of Eimeria recovered from chickens in Australia. Two of the three OTUs have also been detected in sub-Saharan Africa, but their occurrence, pathology and the risk they pose is largely unknown. RESULTS: Nigeria has witnessed a dramatic expansion in poultry production and is now the largest poultry producer in Africa. Here, faecal samples collected from nine of 12 commercial chicken farms sampled in Kaduna state, Nigeria, were found to contain eimerian oocysts. After amplification by in vivo propagation all three cryptic OTU genotypes were detected using polymerase chain reaction (PCR), including OTUy for the first time outside of Australia. Comparison with a widely used, established Eimeria species-specific PCR assay revealed failure to detect the OTU genotypes. CONCLUSIONS: All three of the Eimeria OTU genotypes appear to be common in north-western Nigeria. The failure of a leading species-specific molecular assay to detect these genotypes indicates a risk of false negative Eimeria diagnosis when using molecular tools and suggests that the spatial occurrence of each OTU may be far wider than has been recognised. The risk posed by these novel genotypes is unknown, but it is clear that a better understanding of Eimeria occurrence is required together with the validation of effective diagnostics.


Asunto(s)
Pollos , Coccidiosis/veterinaria , Eimeria/aislamiento & purificación , Enfermedades de las Aves de Corral/parasitología , Animales , Coccidiosis/diagnóstico , Eimeria/clasificación , Eimeria/genética , Genotipo , Técnicas de Diagnóstico Molecular/veterinaria , Nigeria , Reacción en Cadena de la Polimerasa/veterinaria , Enfermedades de las Aves de Corral/diagnóstico
3.
Vet Parasitol ; 322: 110010, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37634263

RESUMEN

Eimeria, protozoan parasites that can cause the disease coccidiosis, pose a persistent challenge to poultry production and welfare. Control is commonly achieved using good husbandry supplemented with routine chemoprophylaxis and/or live parasite vaccination, although widespread drug resistance and challenges to vaccine supply or cost can prove limiting. Extensive effort has been applied to develop subunit anticoccidial vaccines as scalable, cost-effective alternatives, but translation to the field will require a robust understanding of parasite diversity. Using a new Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) panel we begin to describe the genetic diversity of Eimeria acervulina populations in Africa and Europe. PCR-RFLP genotyping E. acervulina populations sampled from commercial broiler and layer chickens reared in Nigeria or the United Kingdom (UK) and Republic of Ireland (RoI) revealed comparable levels of haplotype diversity, in direct contrast to previous descriptions from the close relative E. tenella. Here, 25 distinct PCR-RFLP haplotypes were detected from a panel of 42 E. acervulina samples, including 0.7 and 0.5 haplotypes per sample in Nigeria (n = 20) and the UK/RoI (n = 14), respectively. All but six haplotypes were found to be country-specific. The PCR-RFLP markers immune mapped protein 1 (IMP1) and heat shock protein 90 (HSP90) were most informative for Nigerian E. acervulina, while microneme protein 3 (MIC3) and HSP90 were most informative in UK/RoI populations. High haplotype diversity within E. acervulina populations may indicate frequent genetic exchange and potential for rapid dissemination of genetic material associated with escape from selective barriers such as anticoccidial drugs and future subunit vaccines.

4.
Recent Pat Biotechnol ; 15(1): 76-84, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33511943

RESUMEN

BACKGROUND: Commercial poultry farming is expanding every day and contributing to the provision of affordable and high-quality protein. However, this sector is confronted with many diseases of which coccidiosis is among the most important. There are many registered patents affirming the health benefits of Garcinia kola in poultry. OBJECTIVE: Evaluation of in vitro anticoccidial activities of the extracts and fractions of Garcinia kola against Eimeria tenella oocyst was carried out. METHODS: Fresh seeds of G. kola were collected, dried under shade at room temperature, and pulverized using a mortar and a pestle. The powder was exhaustively extracted with a soxhlet apparatus using 70% methanol, and the crude methanol extract (CME) was concentrated to dryness using a rotary evaporator. The CME was further partitioned using butanol, ethylacetate, and n-hexane. The CME, butanol fraction (BTF), ethylacetate fraction (EAF), and hexane fraction (HXF) were concentrated in vacuo and tested for the presence of phytochemical constituents using standard procedures. Similarly, the CME, butanol, ethyl acetate, and hexane fractions were evaluated in vitro for oocyst sporulation inhibition. RESULTS: Phytochemical analysis revealed the presence of cardiac glycosides, saponins, carbohydrates, steroids/triterpenes, tannins, flavonoids, and alkaloids in the CME and BTF. The EAF contains all the metabolites mentioned except saponins. Similarly, HXF contains only cardiac glycosides, tannins, and steroids/ triterpenes. The CME and BTF caused a concentration-dependent increase in the inhibition of sporulation of unsporulated oocysts of E. tenella. In the acute toxicity studies, the CME did not produce any toxic effect or mortality at doses between 10 and 5000 mg/kg. The CME was then considered safe, and the LD50 was assumed to be >5000 mg/kg. CONCLUSION: The data obtained in this study suggested that the crude methanol extract (CME) of G. kola could be an appreciable beneficial effect as an anticoccidial agent against Eimeria tenella oocyst.


Asunto(s)
Eimeria tenella , Garcinia kola , Animales , Pollos , Oocistos , Patentes como Asunto , Extractos Vegetales/farmacología
5.
Vet Parasitol ; 229: 60-67, 2016 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-27809980

RESUMEN

Eimeria species cause coccidiosis, most notably in chickens where the global cost exceeds US$3 billion every year. Understanding variation in Eimeria population structure and genetic diversity contributes valuable information that can be used to minimise the impact of drug resistance and develop new, cost-effective anticoccidial vaccines. Little knowledge is currently available on the epidemiology of Eimeria species and strains in different regions, or under different chicken production systems. Recently, 244 Eimeria tenella isolates collected from countries in Africa and Asia were genotyped using a Sequenom single nucleotide polymorphism (SNP) tool, revealing significant variation in haplotype diversity and population structure, with a marked North/South regional divide. To expand studies on genetic polymorphism to larger numbers of E. tenella populations in other geographic regions a cheaper and more accessible technique, such as polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), is desirable. We have converted a subset of SNP markers for use as PCR-RFLPs and re-analysed the original 244 isolates with the PCR-RFLPs to assess their utility. In addition, application of the PCR-RFLP to E. tenella samples collected from UK and Irish broiler chickens revealed a tightly restricted haplotype diversity. Just two of the PCR-RFLPs accounted for all of the polymorphism detected in the UK and Irish parasite populations, but analysis of the full dataset revealed different informative markers in different regions, supporting validity of the PCR-RFLP panel. The tools described here provide an accessible and cost-effective method that can be used to enhance understanding of E. tenella genetic diversity and population structure.


Asunto(s)
Pollos , Coccidiosis/veterinaria , Eimeria tenella/genética , Reacción en Cadena de la Polimerasa/veterinaria , Polimorfismo de Longitud del Fragmento de Restricción , Enfermedades de las Aves de Corral/parasitología , Animales , Biomarcadores , Coccidiosis/epidemiología , Coccidiosis/parasitología , Eimeria tenella/aislamiento & purificación , Haplotipos , Irlanda/epidemiología , Polimorfismo de Nucleótido Simple , Enfermedades de las Aves de Corral/epidemiología , Reproducibilidad de los Resultados , Reino Unido/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA