Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Bioinformatics ; 22(1): 191, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33858350

RESUMEN

BACKGROUND: Gene Set Analysis (GSA) is arguably the method of choice for the functional interpretation of omics results. The following paper explores the popularity and the performance of all the GSA methodologies and software published during the 20 years since its inception. "Popularity" is estimated according to each paper's citation counts, while "performance" is based on a comprehensive evaluation of the validation strategies used by papers in the field, as well as the consolidated results from the existing benchmark studies. RESULTS: Regarding popularity, data is collected into an online open database ("GSARefDB") which allows browsing bibliographic and method-descriptive information from 503 GSA paper references; regarding performance, we introduce a repository of jupyter workflows and shiny apps for automated benchmarking of GSA methods ("GSA-BenchmarKING"). After comparing popularity versus performance, results show discrepancies between the most popular and the best performing GSA methods. CONCLUSIONS: The above-mentioned results call our attention towards the nature of the tool selection procedures followed by researchers and raise doubts regarding the quality of the functional interpretation of biological datasets in current biomedical studies. Suggestions for the future of the functional interpretation field are made, including strategies for education and discussion of GSA tools, better validation and benchmarking practices, reproducibility, and functional re-analysis of previously reported data.


Asunto(s)
Biología Computacional , Programas Informáticos , Benchmarking , Reproducibilidad de los Resultados
2.
Epigenomes ; 7(2)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37218871

RESUMEN

Epigenetic modifications are heritable, reversible changes in histones or the DNA that control gene functions, being exogenous to the genomic sequence itself. Human diseases, particularly cancer, are frequently connected to epigenetic dysregulations. One of them is histone methylation, which is a dynamically reversible and synchronously regulated process that orchestrates the three-dimensional epigenome, nuclear processes of transcription, DNA repair, cell cycle, and epigenetic functions, by adding or removing methylation groups to histones. Over the past few years, reversible histone methylation has become recognized as a crucial regulatory mechanism for the epigenome. With the development of numerous medications that target epigenetic regulators, epigenome-targeted therapy has been used in the treatment of malignancies and has shown meaningful therapeutic potential in preclinical and clinical trials. The present review focuses on the recent advances in our knowledge on the role of histone demethylases in tumor development and modulation, in emphasizing molecular mechanisms that control cancer cell progression. Finally, we emphasize current developments in the advent of new molecular inhibitors that target histone demethylases to regulate cancer progression.

3.
Comput Struct Biotechnol J ; 20: 3796-3813, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35891791

RESUMEN

This review discusses our current understanding of chromatin biology and bioinformatics under the unifying concept of "chromatin hubs." The first part reviews the biology of chromatin hubs, including chromatin-chromatin interaction hubs, chromatin hubs at the nuclear periphery, hubs around macromolecules such as RNA polymerase or lncRNAs, and hubs around nuclear bodies such as the nucleolus or nuclear speckles. The second part reviews existing computational methods, including enhancer-promoter interaction prediction, network analysis, chromatin domain callers, transcription factory predictors, and multi-way interaction analysis. We introduce an integrated model that makes sense of the existing evidence. Understanding chromatin hubs may allow us (i) to explain long-unsolved biological questions such as interaction specificity and redundancy of mechanisms, (ii) to develop more realistic kinetic and functional predictions, and (iii) to explain the etiology of genomic disease.

4.
Front Med (Lausanne) ; 9: 965908, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035404

RESUMEN

Gene Set Analysis (GSA) is one of the most commonly used strategies to analyze omics data. Hundreds of GSA-related papers have been published, giving birth to a GSA field in Bioinformatics studies. However, as the field grows, it is becoming more difficult to obtain a clear view of all available methods, resources, and their quality. In this paper, we introduce a web platform called "GSA Central" which, as its name indicates, acts as a focal point to centralize GSA information and tools useful to beginners, average users, and experts in the GSA field. "GSA Central" contains five different resources: A Galaxy instance containing GSA tools ("Galaxy-GSA"), a portal to educational material ("GSA Classroom"), a comprehensive database of articles ("GSARefDB"), a set of benchmarking tools ("GSA BenchmarKING"), and a blog ("GSA Blog"). We expect that "GSA Central" will become a useful resource for users looking for introductory learning, state-of-the-art updates, method/tool selection guidelines and insights, tool usage, tool integration under a Galaxy environment, tool design, and tool validation/benchmarking. Moreover, we expect this kind of platform to become an example of a "thematic platform" containing all the resources that people in the field might need, an approach that could be extended to other bioinformatics topics or scientific fields.

5.
Comput Biol Med ; 59: 211-220, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25128302

RESUMEN

Acknowledging the successful sequencing of the human genome and the valuable insights it has rendered, genetic drafting of non-human organisms can further enhance the understanding of modern biology. The price of sequencing technology has plummeted with time, and there is a noticeable enhancement in its implementation and recurrent usage. Sequenced genome information can be contained in a microarray chip, and then processed by a computer system for inferring analytics and predictions. Specifically, smart cards have been significantly applicable to assimilate and retrieve complex data, with ease and implicit mobility. Herein, we propose "The G-Card", a development with respect to the prevalent smart card, and an extension to the Electronic Health Record (EHR), that will hold the genome sequence of an individual, so that the medical practitioner can better investigate irregularities in a patient's health and hence recommend a precise prognosis.


Asunto(s)
Bases de Datos Genéticas , Registros Electrónicos de Salud , Genoma Humano , Sistemas de Información en Salud/instrumentación , Medicina de Precisión/instrumentación , Medicina de Precisión/métodos , Confidencialidad , Humanos
6.
Artículo en Inglés | MEDLINE | ID: mdl-26356021

RESUMEN

An understanding towards genetics and epigenetics is essential to cope up with the paradigm shift which is underway. Personalized medicine and gene therapy will confluence the days to come. This review highlights traditional approaches as well as current advancements in the analysis of the gene expression data from cancer perspective. Due to improvements in biometric instrumentation and automation, it has become easier to collect a lot of experimental data in molecular biology. Analysis of such data is extremely important as it leads to knowledge discovery that can be validated by experiments. Previously, the diagnosis of complex genetic diseases has conventionally been done based on the non-molecular characteristics like kind of tumor tissue, pathological characteristics, and clinical phase. The microarray data can be well accounted for high dimensional space and noise. Same were the reasons for ineffective and imprecise results. Several machine learning and data mining techniques are presently applied for identifying cancer using gene expression data. While differences in efficiency do exist, none of the well-established approaches is uniformly superior to others. The quality of algorithm is important, but is not in itself a guarantee of the quality of a specific data analysis.


Asunto(s)
Biología Computacional/métodos , Minería de Datos/métodos , Epigenómica/métodos , Perfilación de la Expresión Génica/métodos , Neoplasias/genética , Análisis por Conglomerados , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Neoplasias/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA