Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
J Biol Chem ; 294(12): 4412-4424, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670588

RESUMEN

Human interleukin-12 (hIL-12) is a heparin-binding cytokine whose activity was previously shown to be enhanced by heparin and other sulfated glycosaminoglycans. The current study investigated the mechanisms by which heparin increases hIL-12 activity. Using multiple human cell types, including natural killer cells, an IL-12 indicator cell line, and primary peripheral blood mononuclear and T cells, along with bioactivity, flow cytometry, and isothermal titration calorimetry assays, we found that heparin-dependent modulation of hIL-12 function correlates with several of heparin's biophysical characteristics, including chain length, sulfation level, and concentration. Specifically, only heparin molecules longer than eight saccharide units enhanced hIL-12 activity. Furthermore, heparin molecules with three sulfate groups per disaccharide unit outperformed heparin molecules with one or two sulfate groups per disaccharide unit in terms of enhanced hIL-12 binding and activity. Heparin also significantly reduced the EC50 value of hIL-12 by up to 11.8-fold, depending on the responding cell type. Cytokine-profiling analyses revealed that heparin affected the level, but not the type, of cytokines produced by lymphocytes in response to hIL-12. Interestingly, although murine IL-12 also binds heparin, heparin did not enhance its activity. Using the gathered data, we propose a model of hIL-12 stabilization in which heparin serves as a co-receptor enhancing the interaction between heterodimeric hIL-12 and its receptor subunits. The results of this study provide a foundation for further investigation of heparin's interactions with IL-12 family cytokines and for the use of heparin as an immunomodulatory agent.


Asunto(s)
Heparina/farmacología , Interleucina-12/farmacología , Animales , Fenómenos Biofísicos , Calorimetría , Citocinas/biosíntesis , Relación Dosis-Respuesta a Droga , Femenino , Citometría de Flujo , Células HEK293 , Heparina/química , Heparitina Sulfato/metabolismo , Humanos , Interleucina-12/metabolismo , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Receptores de Interleucina-2/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
2.
J Biol Chem ; 293(1): 28-46, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158266

RESUMEN

Defense responses of peanut (Arachis hypogaea) to biotic and abiotic stresses include the synthesis of prenylated stilbenoids. Members of this compound class show several protective activities in human disease studies, and the list of potential therapeutic targets continues to expand. Despite their medical and biological importance, the biosynthetic pathways of prenylated stilbenoids remain to be elucidated, and the genes encoding stilbenoid-specific prenyltransferases have yet to be identified in any plant species. In this study, we combined targeted transcriptomic and metabolomic analyses to discover prenyltransferase genes in elicitor-treated peanut hairy root cultures. Transcripts encoding five enzymes were identified, and two of these were functionally characterized in a transient expression system consisting of Agrobacterium-infiltrated leaves of Nicotiana benthamiana We observed that one of these prenyltransferases, AhR4DT-1, catalyzes a key reaction in the biosynthesis of prenylated stilbenoids, in which resveratrol is prenylated at its C-4 position to form arachidin-2, whereas another, AhR3'DT-1, added the prenyl group to C-3' of resveratrol. Each of these prenyltransferases was highly specific for stilbenoid substrates, and we confirmed their subcellular location in the plastid by fluorescence microscopy. Structural analysis of the prenylated stilbenoids suggested that these two prenyltransferase activities represent the first committed steps in the biosynthesis of a large number of prenylated stilbenoids and their derivatives in peanut. In summary, we have identified five candidate prenyltransferases in peanut and confirmed that two of them are stilbenoid-specific, advancing our understanding of this specialized enzyme family and shedding critical light onto the biosynthesis of bioactive stilbenoids.


Asunto(s)
Arachis/enzimología , Dimetilaliltranstransferasa/metabolismo , Sesquiterpenos/metabolismo , Estilbenos/metabolismo , Secuencia de Aminoácidos , Arachis/química , Arachis/genética , Arachis/metabolismo , Vías Biosintéticas , Dimetilaliltranstransferasa/análisis , Dimetilaliltranstransferasa/genética , Filogenia , Raíces de Plantas/química , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Resveratrol , Metabolismo Secundario , Alineación de Secuencia , Especificidad por Sustrato , Transcriptoma , Fitoalexinas
3.
Biochem Biophys Res Commun ; 518(2): 191-196, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31420170

RESUMEN

Acidic fibroblast growth factors (FGF1s) are heparin binding proteins that regulate a wide array of key cellular processes and are also candidates for promising biomedical applications. FGF1-based therapeutic applications are currently limited due to their inherent thermal instability and susceptibility to proteases. Using a wide range of biophysical and biochemical techniques, we demonstrate that reversal of charge on a well-conserved positively charged amino acid, R136, in the heparin binding pocket drastically increases the resistance to proteases, thermal stability, and cell proliferation activity of the human acidic fibroblast growth factor (hFGF1). Two-dimensional NMR data suggest that the single point mutations at position-136 (R136G, R136L, R136Q, R136K, and R136E) did not perturb the backbone folding of hFGF1. Results of the differential scanning calorimetry experiments show that of all the designed R136 mutations only the charge reversal mutation, R136E, significantly increases (ΔTm = 7 °C) the thermal stability of the protein. Limited trypsin and thrombin digestion results reveal that the R136E mutation drastically increases the resistance of hFGF1 to the action of the serine proteases. Isothermal titration calorimetry data show that the R136E mutation markedly decreases the heparin binding affinity of hFGF1. Interestingly, despite lower heparin binding affinity, the cell proliferation activity of the R136E variant is more than double of that exhibited by either the wild type or the other R136 variants. The R136E variant due to its increased thermal stability, resistance to proteases, and enhanced cell proliferation activity are expected to provide valuable clues for the development of hFGF1- based therapeutics for the management of chronic diabetic wounds.


Asunto(s)
Proliferación Celular , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Trombina/metabolismo , Animales , Factor 1 de Crecimiento de Fibroblastos/química , Factor 1 de Crecimiento de Fibroblastos/genética , Humanos , Ratones , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Células 3T3 NIH , Mutación Puntual , Conformación Proteica
4.
Arch Biochem Biophys ; 654: 115-125, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30031837

RESUMEN

Human acidic fibroblast growth factor 1 (hFGF1) is a protein intricately involved in cell growth and tissue repair. In this study, we investigate the effect(s) of understanding the role of a conserved proline (P135), located in the heparin binding pocket, on the structure, stability, heparin binding affinity, and cell proliferation activity of hFGF1. Substitution of proline-135 with a positively charged lysine (P135K) resulted in partial destabilization of the protein; however, the overall structural integrity of the protein was maintained upon substitution of proline-135 with either a negative charge (P135E) or a polar amino acid (P135Q). Interestingly, upon heparin binding, an increase in thermal stability equivalent to that of wt-hFGF1 was observed when P135 was replaced with a positive (P135K) or a negative charge (P135E), or with a polar amino acid (P135Q). Surprisingly, introduction of negative charge in the heparin-binding pocket at position 135 (P135E) increased hFGF1's affinity for heparin by 3-fold, while the P135K mutation, did not alter the heparin-binding affinity. However, the enhanced heparin-binding affinity of mutant P135E did not translate to an increase in cell proliferation activity. Interestingly, the P135K and P135E double mutations, P135K/R136E and P135/R136E, reduced the heparin binding affinity by ∼3-fold. Furthermore, the cell proliferation activity was increased when the charge reversal mutation R136E was paired with both P135E (P135E/R136E) and P135K (P135K/R136E). Overall, the results of this study suggest that while heparin is useful for stabilizing hFGF1 on the cell surface, this interaction is not mandatory for activation of the FGF receptor.


Asunto(s)
Proliferación Celular/fisiología , Factor 1 de Crecimiento de Fibroblastos/química , Factor 1 de Crecimiento de Fibroblastos/fisiología , Prolina/fisiología , Factor 1 de Crecimiento de Fibroblastos/genética , Heparina/metabolismo , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Espectroscopía de Protones por Resonancia Magnética , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo
5.
J Biol Chem ; 291(48): 25133-25143, 2016 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-27758871

RESUMEN

Previous research has indicated that long-chain fatty acids can bind myoglobin (Mb) in an oxygen-dependent manner. This suggests that oxy-Mb may play an important role in fuel delivery in Mb-rich muscle fibers (e.g. type I fibers and cardiomyocytes), and raises the possibility that Mb also serves as an acylcarnitine-binding protein. We report for the first time the putative interaction and affinity characteristics for different chain lengths of both fatty acids and acylcarnitines with oxy-Mb using molecular dynamic simulations and isothermal titration calorimetry experiments. We found that short- to medium-chain fatty acids or acylcarnitines (ranging from C2:0 to C10:0) fail to achieve a stable conformation with oxy-Mb. Furthermore, our results indicate that C12:0 is the minimum chain length essential for stable binding of either fatty acids or acylcarnitines with oxy-Mb. Importantly, the empirical lipid binding studies were consistent with structural modeling. These results reveal that: (i) the lipid binding affinity for oxy-Mb increases as the chain length increases (i.e. C12:0 to C18:1), (ii) the binding affinities of acylcarnitines are higher when compared with their respective fatty acid counterparts, and (iii) both fatty acids and acylcarnitines bind to oxy-Mb in 1:1 stoichiometry. Taken together, our results support a model in which oxy-Mb is a novel regulator of long-chain acylcarnitine and fatty acid pools in Mb-rich tissues. This has important implications for physiological fuel management during exercise, and relevance to pathophysiological conditions (e.g. fatty acid oxidation disorders and cardiac ischemia) where long-chain acylcarnitine accumulation is evident.


Asunto(s)
Carnitina/análogos & derivados , Ácidos Grasos/química , Modelos Químicos , Mioglobina/química , Animales , Carnitina/química , Caballos
6.
Biophys J ; 111(6): 1151-1162, 2016 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-27653474

RESUMEN

Chloroplast signal recognition particle (cpSRP) is a heterodimer composed of an evolutionarily conserved 54-kDa GTPase (cpSRP54) and a unique 43-kDa subunit (cpSRP43) responsible for delivering light-harvesting chlorophyll binding protein to the thylakoid membrane. While a nearly complete three-dimensional structure of cpSRP43 has been determined, no high-resolution structure is yet available for cpSRP54. In this study, we developed and examined an in silico three-dimensional model of the structure of cpSRP54 by homology modeling using cytosolic homologs. Model selection was guided by single-molecule Förster resonance energy transfer experiments, which revealed the presence of at least two distinct conformations. Small angle x-ray scattering showed that the linking region among the GTPase (G-domain) and methionine-rich (M-domain) domains, an M-domain loop, and the cpSRP43 binding C-terminal extension of cpSRP54 are predominantly disordered. Interestingly, the linker and loop segments were observed to play an important role in organizing the domain arrangement of cpSRP54. Further, deletion of the finger loop abolished loading of the cpSRP cargo, light-harvesting chlorophyll binding protein. These data highlight important structural dynamics relevant to cpSRP54's role in the post- and cotranslational signaling processes.


Asunto(s)
GTP Fosfohidrolasas/química , Partícula de Reconocimiento de Señal/química , Animales , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cloroplastos/metabolismo , Perros , Escherichia coli , Transferencia Resonante de Energía de Fluorescencia , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Methanocaldococcus , Simulación de Dinámica Molecular , Mutación , Dominios Proteicos , Dispersión del Ángulo Pequeño , Partícula de Reconocimiento de Señal/genética , Partícula de Reconocimiento de Señal/metabolismo , Homología Estructural de Proteína , Sulfolobus solfataricus , Thermus , Difracción de Rayos X
7.
Biochemistry ; 55(7): 1159-67, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26836284

RESUMEN

Fibroblast growth factor 1 (FGF1), a ubiquitously expressed pro-angiogenic protein that is involved in tissue repair, carcinogenesis, and maintenance of vasculature stability, is released from the cells via a stress-dependent nonclassical secretory pathway. FGF1 secretion is a result of transmembrane translocation of this protein. It correlates with the ability of FGF1 to permeabilize membranes composed of acidic phospholipids. Like several other nonclassically exported proteins, FGF1 exhibits ß-barrel folding. To assess the role of folding of FGF1 in its secretion, we applied targeted mutagenesis in combination with a complex of biophysical methods and molecular dynamics studies, followed by artificial membrane permeabilization and stress-induced release experiments. It has been demonstrated that a mutation of proline 135 located in the C-terminus of FGF1 results in (i) partial unfolding of FGF1, (ii) a decrease in FGF1's ability to permeabilize bilayers composed of phosphatidylserine, and (iii) drastic inhibition of stress-induced FGF1 export. Thus, folding of FGF1 is critical for its nonclassical secretion.


Asunto(s)
Permeabilidad de la Membrana Celular , Factor 1 de Crecimiento de Fibroblastos/química , Modelos Moleculares , Pliegue de Proteína , Sustitución de Aminoácidos , Animales , Rastreo Diferencial de Calorimetría , Factor 1 de Crecimiento de Fibroblastos/genética , Factor 1 de Crecimiento de Fibroblastos/metabolismo , Células HEK293 , Humanos , Cinética , Membrana Dobles de Lípidos/química , Membranas Artificiales , Ratones , Simulación de Dinámica Molecular , Mutación , Células 3T3 NIH , Permeabilidad , Fosfatidilserinas/química , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
8.
J Biol Chem ; 290(25): 15462-15474, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-25918165

RESUMEN

Protein targeting is critical in all living organisms and involves a signal recognition particle (SRP), an SRP receptor, and a translocase. In co-translational targeting, interactions among these proteins are mediated by the ribosome. In chloroplasts, the light-harvesting chlorophyll-binding protein (LHCP) in the thylakoid membrane is targeted post-translationally without a ribosome. A multidomain chloroplast-specific subunit of the SRP, cpSRP43, is proposed to take on the role of coordinating the sequence of targeting events. Here, we demonstrate that cpSRP43 exhibits significant interdomain dynamics that are reduced upon binding its SRP binding partner, cpSRP54. We showed that the affinity of cpSRP43 for the binding motif of LHCP (L18) increases when cpSRP43 is complexed to the binding motif of cpSRP54 (cpSRP54pep). These results support the conclusion that substrate binding to the chloroplast SRP is modulated by protein structural dynamics in which a major role of cpSRP54 is to improve substrate binding efficiency to the cpSRP.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membranas Intracelulares/metabolismo , Partícula de Reconocimiento de Señal/metabolismo , Tilacoides/metabolismo , Secuencias de Aminoácidos , Arabidopsis/química , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Membranas Intracelulares/química , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , Partícula de Reconocimiento de Señal/química , Partícula de Reconocimiento de Señal/genética , Tilacoides/química , Tilacoides/genética
9.
Protein Expr Purif ; 126: 93-103, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27235575

RESUMEN

Purification of recombinant proteins constitutes a significant part of the downstream processing in biopharmaceutical industries. Major costs involved in the production of bio-therapeutics mainly depend on the number of purification steps used during the downstream process. Affinity chromatography is a widely used method for the purification of recombinant proteins expressed in different expression host platforms. Recombinant protein purification is achieved by fusing appropriate affinity tags to either N- or C- terminus of the target recombinant proteins. Currently available protein/peptide affinity tags have proved quite useful in the purification of recombinant proteins. However, these affinity tags suffer from specific limitations in their use under different conditions of purification. In this study, we have designed a novel 34-amino acid heparin-binding affinity tag (HB-tag) for the purification of recombinant proteins expressed in Escherichia coli (E. coli) cells. HB-tag fused recombinant proteins were overexpressed in E. coli in high yields. A one-step heparin-Sepharose-based affinity chromatography protocol was developed to purify HB-fused recombinant proteins to homogeneity using a simple sodium chloride step gradient elution. The HB-tag has also been shown to facilitate the purification of target recombinant proteins from their 8 M urea denatured state(s). The HB-tag has been demonstrated to be successfully released from the fusion protein by an appropriate protease treatment to obtain the recombinant target protein(s) in high yields. Results of the two-dimensional NMR spectroscopy experiments indicate that the purified recombinant target protein(s) exist in the native conformation. Polyclonal antibodies raised against the HB-peptide sequence, exhibited high binding specificity and sensitivity to the HB-fused recombinant proteins (∼10 ng) in different crude cell extracts obtained from diverse expression hosts. In our opinion, the HB-tag provides a cost-effective, rapid, and reliable avenue for the purification of recombinant proteins in heterologous hosts.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis/genética , Cromatografía de Afinidad/métodos , Heparina/química , Proteínas Recombinantes de Fusión , Arabidopsis/metabolismo , Proteínas de Arabidopsis/biosíntesis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/aislamiento & purificación , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación
10.
Biochim Biophys Acta ; 1844(12): 2155-63, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25224745

RESUMEN

Fibroblast growth factor 1 (FGF1) is a heparin-binding proangiogenic protein. FGF1 lacks the conventional N-terminal signal peptide required for secretion through the endoplasmic reticulum (ER)-Golgi secretory pathway. FGF1 is released through a Cu(2+)-mediated nonclassical secretion pathway. The secretion of FGF1 involves the formation of a Cu(2+)-mediated multiprotein release complex (MRC) including FGF1, S100A13 (a calcium-binding protein) and p40 synaptotagmin (Syt1). It is believed that the binding of Cu(2+) to the C2B domain is important for the release of FGF1 into the extracellular medium. In this study, using a variety of biophysical studies, Cu(2+) and lipid interactions of the C2B domain of Syt1 were characterized. Isothermal titration calorimetry (ITC) experiments reveal that the C2B domain binds to Cu(2+) in a biphasic manner involving an initial endothermic and a subsequent exothermic phase. Fluorescence energy transfer experiments using Tb(3+) show that there are two Cu(2+)-binding pockets on the C2B domain, and one of these is also a Ca(2+)-binding site. Lipid-binding studies using ITC demonstrate that the C2B domain preferentially binds to small unilamellar vesicles of phosphatidyl serine (PS). Results of the differential scanning calorimetry and limited trypsin digestion experiments suggest that the C2B domain is marginally destabilized upon binding to PS vesicles. These results, for the first time, suggest that the main role of the C2B domain of Syt1 is to serve as an anchor for the FGF1 MRC on the membrane bilayer. In addition, the binding of the C2B domain to the lipid bilayer is shown to significantly decrease the binding affinity of the protein to Cu(2+). The study provides valuable insights on the sequence of structural events that occur in the nonclassical secretion of FGF1.

11.
Protein Expr Purif ; 102: 76-84, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25123642

RESUMEN

Interleukin-12 is a heterodimeric, pro-inflammatory cytokine that is a key driver of cell-mediated immunity. Clinical interest in IL-12 is significant due to its potent anti-tumor activity and efficacy in controlling certain infectious diseases such as Leishmaniasis and Listeria infection. For clinical applications, the ease of production and purification of IL-12 and the associated cost continues to be a consideration. In this context, we report a simple and effective heparin-affinity based purification of recombinant human IL-12 (hIL-12) from the serum-free supernatants of stable IL-12-transduced HEK293 cells. Fractionation of culture supernatants on heparin Sepharose columns revealed that hIL-12 elutes as a single peak in 500 mM NaCl. Coomassie staining and Western blot analysis showed that hIL-12 eluted in 500 mM NaCl is homogeneous. Purity of hIL-12 was ascertained by RP-HPLC and ESI-MS analysis, and found to be ∼98%. Western blot analysis, using monoclonal antibodies, demonstrated that the crucial inter-subunit disulfide bond linking the p35 and p40 subunits is intact in the purified hIL-12. Results of far UV circular dichroism, steady-state tryptophan fluorescence, and differential scanning calorimetry experiments suggest that purified hIL-12 is in its stable native conformation. Enzyme linked immunosorbent assays (ELISAs) and bioactivity studies demonstrate that hIL-12 is obtained in high yields (0.31±0.05 mg/mL of the culture medium) and is also fully bioactive. Isothermal titration calorimetry data show that IL-12 exhibits a moderate binding affinity (Kd(app)=69±1 µM) to heparin. The purification method described in this study is expected to provide greater impetus for research on the role of heparin in the regulation of the function of IL-12. In addition, the results of this study provide an avenue to obtain high amounts of IL-12 required for structural studies which are aimed at the development of novel IL-12-based therapeutics.


Asunto(s)
Células HEK293/metabolismo , Interleucina-12/genética , Interleucina-12/aislamiento & purificación , Secuencia de Aminoácidos , Sitios de Unión , Western Blotting , Cromatografía de Afinidad , Clonación Molecular , Electroforesis en Gel de Poliacrilamida , Heparina/metabolismo , Humanos , Interleucina-12/química , Interleucina-12/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Regulación hacia Arriba
12.
Artículo en Inglés | MEDLINE | ID: mdl-33773335

RESUMEN

The synthesis and purification of peptides of importance in the fields of research and medicine continue to be a challenging task. Chemical synthesis of oligopeptides, especially those greater than 25 amino acids, is cost prohibitive. On the other hand, several bottlenecks exist in the production of recombinant short peptides in heterologous expression hosts such as Escherichia coli (E. coli). In this study, a rapid, cost-effective, and reliable method for the production and single-step-purification of peptides and small proteins was developed. Five peptides and small proteins were overexpressed in E. coli as GST-fusion products in high yields. The recombinant peptides or proteins were successfully purified after enzymatic cleavage with selective heat-induced precipitation of the GST-affinity tag. Qualitative and quantitative analysis using SDS-PAGE and mass spectrometric methods suggest that the recombinant peptides/ proteins were purified to greater than 95% homogeneity. Results of biophysical experiments, including multi-dimensional NMR spectroscopy, show that the purified proteins/ peptides retain their native conformation. Isothermal titration calorimetry studies indicate no significant change in the binding affinity of the heat-treated purified product to their interacting partner(s) compared to the recombinant peptides purified by conventional chromatographic procedures without subjecting to heat treatment. In our opinion, the results reported render the purification of recombinant proteins/ peptides of biomedical relevance using our proposed method easy and reliable.


Asunto(s)
Péptidos/aislamiento & purificación , Proteínas Recombinantes de Fusión/aislamiento & purificación , Cromatografía de Afinidad , Escherichia coli/genética , Glutatión Transferasa/química , Calor , Conformación Proteica
13.
Biochim Biophys Acta Mol Cell Res ; 1867(1): 118573, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31678591

RESUMEN

Cytochrome c (Cyt c) released from mitochondria interacts with Apaf-1 to form the heptameric apoptosome, which initiates the caspase cascade to execute apoptosis. Although lysine residue at 72 (K72) of Cyt c plays an important role in the Cyt c-Apaf-1 interaction, the underlying mechanism of interaction between Cyt c and Apaf-1 is still not clearly defined. Here we identified multiple lysine residues including K72, which are also known to interact with ATP, to play a key role in Cyt c-Apaf-1 interaction. Mutation of these lysine residues abrogates the apoptosome formation causing inhibition of caspase activation. Using in-silico molecular docking, we have identified Cyt c-binding interface on Apaf-1. Although mutant Cyt c shows higher affinity for Apaf-1, the presence of Cyt c-WT restores the apoptosome activity. ATP addition modulates only mutant Cyt c binding to Apaf-1 but not WT Cyt c binding to Apaf-1. Using TCGA and cBioPortal, we identified multiple mutations in both Apaf-1 and Cyt c that are predicted to interfere with apoptosome assembly. We also demonstrate that transcript levels of various enzymes involved with dATP or ATP synthesis are increased in various cancers. Silencing of nucleotide metabolizing enzymes such as ribonucleotide reductase subunit M1 (RRM1) and ATP-producing glycolytic enzymes PKM2 attenuated ATP production and enhanced caspase activation. These findings suggest important role for lysine residues of Cyt c and nucleotides in the regulation of apoptosome-dependent apoptotic cell death as well as demonstrate how these mutations and nucleotides may have a pivotal role in human diseases such as cancer.


Asunto(s)
Apoptosomas/fisiología , Citocromos c/química , Simulación del Acoplamiento Molecular , Neoplasias/patología , Nucleótidos/química , Alanina/química , Alanina/genética , Sustitución de Aminoácidos , Apoptosomas/química , Factor Apoptótico 1 Activador de Proteasas/química , Factor Apoptótico 1 Activador de Proteasas/metabolismo , Estudios de Casos y Controles , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Cultivadas , Citocromos c/genética , Citocromos c/metabolismo , Femenino , Humanos , Lisina/química , Lisina/genética , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas Mutantes/fisiología , Neoplasias/genética , Neoplasias/metabolismo , Nucleótidos/metabolismo , Células PC-3 , Unión Proteica/genética , Mapeo de Interacción de Proteínas , Multimerización de Proteína/genética , Transducción de Señal/genética
14.
J Biomol Struct Dyn ; 37(7): 1685-1699, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29658387

RESUMEN

Vasotocin 1a and 1b receptors (V1aR and V1bR) have been shown to play important roles in the neuroendocrine regulation of stress responses via the anterior pituitary (AP) of birds. To identify effective subtype-specific antagonists for the chicken V1aR (cV1aR) and cV1bR, potential antagonists to the mammalian V1R were screened against the cV1aR and cV1bR 3D structural models by molecular docking analysis with determination of binding pocket/amino acid residues involved in the interaction. The antagonistic effects of the selected ligands were examined by measuring pro-opiomelanocortin (POMC) heteronuclear RNA (hnPOMC) levels following the in vitro stress administration to primary chicken AP cells. Results of in silico analysis showed that the Manning compound and several other antagonists were bound to cV1bR with higher affinity than the natural agonist, arginine vasotocin (AVT). Similarities and differences in the antagonist-receptor binding interface with receptors were characterized for each ligand. Non-peptide mammalian V1bR antagonists, SSR-149415 and L-368899, were shown to be effective and had an additive effect in blocking POMC hnRNA expression in pituitary cell culture studies. SR-49059 antagonized the effect(s) of AVT/CRH on the downregulation of the cV1aR and the upregulation of the cCRH-R2 expression but not the cV1bR and cCRH-R1. The Manning compound antagonized the downregulation of cV1aR, cV1bR and cCRH-R1 and the upregulation of cCRH-R2 expression. The specificity of antagonists apparently resulted from unique differences in the interacting residues and their binding affinities. Collectively, these results provide valuable leads for future development of novel compounds capable of blocking or attenuating the AP stress response of avian species and perhaps other non-mammalian vertebrates as well.


Asunto(s)
Antagonistas de los Receptores de Hormonas Antidiuréticas/química , Modelos Moleculares , Conformación Molecular , Receptores de Vasopresinas/química , Secuencia de Aminoácidos , Animales , Antagonistas de los Receptores de Hormonas Antidiuréticas/farmacología , Células Cultivadas , Pollos , Expresión Génica , Ligandos , Masculino , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Receptores de Vasopresinas/genética , Receptores de Vasopresinas/metabolismo , Estrés Fisiológico
15.
Biochem Biophys Rep ; 13: 45-57, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29556563

RESUMEN

Acidic human fibroblast growth factor (hFGF1) plays a key role in cell growth and proliferation. Activation of the cell surface FGF receptor is believed to involve the glycosaminoglycan, heparin. However, the exact role of heparin is a subject of considerable debate. In this context, in this study, the correlation between heparin binding affinity and cell proliferation activity of hFGF1 is examined by extending the heparin binding pocket through selective engineering via charge reversal mutations (D82R, D84R and D82R/D84R). Results of biophysical experiments such as intrinsic tryptophan fluorescence and far UV circular dichroism spectroscopy suggest that the gross native structure of hFGF1 is not significantly perturbed by the engineered mutations. However, results of limited trypsin digestion and ANS binding experiments show that the backbone structure of the D82R variant is more flexible than that of the wild type hFGF1. Results of the temperature and urea-induced equilibrium unfolding experiments suggest that the stability of the charge-reversal mutations increases in the presence of heparin. Isothermal titration calorimetry (ITC) data reveal that the heparin binding affinity is significantly increased when the charge on D82 is reversed but not when the negative charge is reversed at both positions D82 and D84 (D82R/D84R). However, despite the increased affinity of D82R for heparin, the cell proliferation activity of the D82R variant is observed to be reduced compared to the wild type hFGF1. The results of this study clearly demonstrate that heparin binding affinity of hFGF1 is not strongly correlated to its cell proliferation activity.

16.
Curr Protoc Protein Sci ; 90: 6.16.1-6.16.13, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091276

RESUMEN

Heparin, a member of the glycosaminoglycan family, is known to interact with more than 400 different types of proteins. For the past few decades, significant progress has been made to understand the molecular details involved in heparin-protein interactions. Based on the structural knowledge available from the FGF1-heparin interaction studies, we have designed a novel heparin-binding peptide (HBP) affinity tag that can be used for the simple, efficient, and cost-effective purification of recombinant proteins of interest. HBP-tagged fusion proteins can be purified by heparin Sepharose affinity chromatography using a simple sodium chloride gradient to elute the bound fusion protein. In addition, owing to the high density of positive charges on the HBP tag, recombinant target proteins are preferably expressed in their soluble forms. The purification of HBP-fusion proteins can also be achieved in the presence of chemical denaturants, including urea. Additionally, polyclonal antibodies raised against the affinity tag can be used to detect HBP-fused target proteins with high sensitivity. © 2017 by John Wiley & Sons, Inc.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/genética , Proteínas Sanguíneas/genética , Proteínas Portadoras/genética , Cromatografía de Afinidad/métodos , Escherichia coli/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Sefarosa/análogos & derivados , Secuencia de Aminoácidos , Péptidos Catiónicos Antimicrobianos/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas Portadoras/metabolismo , Cromatografía en Agarosa , Clonación Molecular , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sefarosa/química , Cloruro de Sodio/química
17.
Biomol NMR Assign ; 11(2): 285-288, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28815423

RESUMEN

The bacterium Staphylococcus aureus produces an array of anti-inflammatory molecules that prevent the innate immune system from recognizing it as a pathogen and clearing it from the host. In the acute phase of inflammation, our immune system relies on neutrophils to clear invading bacteria. Recently, novel classes of secreted proteins from S. aureus, including the Extracellular Adherence Protein (EAP) family (Stapels et al., Proc Natl Acad Sci USA 111:13187-13192, 2014) and the Staphylococcal Peroxidase Inhibitor (SPIN), (unpublished work) have been identified as highly selective inhibitors acting on Neutrophil Serine Proteases (NSPs) and myeloperoxidase (MPO) respectively. SPIN is a protein found only in Staphylococci, with no sequence homology to any known proteins. Solution NMR structural studies of SPIN are therefore expected to provide a deeper understanding of its interaction with MPO. In this study, we report the backbone and side-chain 1H, 15N, and 13C resonance assignments of SPIN. Furthermore, using the chemical shifts of these resonances, we predicted the secondary structure of SPIN in solution via the TALOS-N server. The assignment data has been deposited in the BMRB data bank under Accession No. 27069.


Asunto(s)
Proteínas Bacterianas/química , Inhibidores Enzimáticos/química , Resonancia Magnética Nuclear Biomolecular , Peroxidasa/antagonistas & inhibidores , Staphylococcus aureus , Secuencia de Aminoácidos , Proteínas Bacterianas/farmacología , Inhibidores Enzimáticos/farmacología
18.
Sci Rep ; 7(1): 5360, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28706183

RESUMEN

Glycosaminoglycans (GAGs), especially heparin and heparan sulfate (HS), modulate the functions of numerous cytokines. The aims of this multidisciplinary research were to characterize heparin binding to interleukin-12 (IL-12) and determine the mechanism(s) by which heparin influences IL-12 bioactivity. Heparin and HS were found to bind human IL-12 (hIL-12) with low micromolar affinity and increase hIL-12 bioactivity by more than 6-fold. Conversely, other GAGs did not demonstrate significant binding, nor did their addition affect hIL-12 bioactivity. Biophysical studies demonstrated that heparin induced only minor conformational changes while size-exclusion chromatography and small angle X-ray scattering studies indicated that heparin induced dimerization of hIL-12. Heparin modestly protected hIL-12 from proteolytic degradation, however, this was not a likely mechanism for increased cytokine activity in vitro. Flow cytometry studies revealed that heparin increased the amount of hIL-12 bound to cell surfaces. Heparin also facilitated hIL-12 binding and signaling in cells in which both hIL-12 receptor subunits were functionally deleted. Results of this study demonstrate a new role for heparin in modulating the biological activity of IL-12.


Asunto(s)
Heparina/metabolismo , Factores Inmunológicos/metabolismo , Interleucina-12/metabolismo , Fenómenos Biofísicos , Línea Celular , Cromatografía en Gel , Citometría de Flujo , Heparitina Sulfato/metabolismo , Humanos , Interleucina-12/química , Subunidad p35 de la Interleucina-12 , Unión Proteica , Conformación Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Dispersión del Ángulo Pequeño
19.
Biotechnol Prog ; 32(4): 865-71, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27162203

RESUMEN

Interest in peptides as diagnostic and therapeutic materials require their manufacture via either a recombinant or synthetic route. This study examined the former, where a recombinant fusion consisting of an antifungal peptide was expressed and isolated from Escherichia coli. Fed batch fermentation with E. coli harboring an arabinose-inducible plasmid produced the 12 residue anti-Candida peptide fused to the N-terminal of Green Fluorescent Protein (GFPUV ). The purification of the fusion protein, using ion-exchange chromatography, was monitored by using the intrinsic fluorescence of GFPUV . The recombinant antifungal peptide was successfully released by cyanogen bromide-induced cleavage of the fusion protein. The recombinant peptide showed the expected antifungal activity. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:865-871, 2016.


Asunto(s)
Antifúngicos/farmacología , Técnicas de Cultivo Celular por Lotes , Candida albicans/efectos de los fármacos , Péptidos/farmacología , Antifúngicos/aislamiento & purificación , Antifúngicos/metabolismo , Cromatografía por Intercambio Iónico , Escherichia coli/metabolismo , Fermentación , Pruebas de Sensibilidad Microbiana , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
20.
Biomaterials ; 35(14): 4382-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24560459

RESUMEN

Chitosan-based nano/microencapsulation is under increasing investigation for the delivery of drugs, biologics and vaccines. Despite widespread interest, the literature lacks a defined methodology to control chitosan particle size and drug/protein release kinetics. In this study, the effects of precipitation-coacervation formulation parameters on chitosan particle size, protein encapsulation efficiency and protein release were investigated. Chitosan particle sizes, which ranged from 300 nm to 3 µm, were influenced by chitosan concentration, chitosan molecular weight and addition rate of precipitant salt. The composition of precipitant salt played a significant role in particle formation with upper Hofmeister series salts containing strongly hydrated anions yielding particles with a low polydispersity index (PDI) while weaker anions resulted in aggregated particles with high PDIs. Sonication power had minimal effect on mean particle size, however, it significantly reduced polydispersity. Protein loading efficiencies in chitosan nano/microparticles, which ranged from 14.3% to 99.2%, were inversely related to the hydration strength of precipitant salts, protein molecular weight and directly related to the concentration and molecular weight of chitosan. Protein release rates increased with particle size and were generally inversely related to protein molecular weight. This study demonstrates that chitosan nano/microparticles with high protein loading efficiencies can be engineered with well-defined sizes and controllable release kinetics through manipulation of specific formulation parameters.


Asunto(s)
Quitosano/química , Sistemas de Liberación de Medicamentos , Fluoresceína-5-Isotiocianato/análogos & derivados , Proteínas Inmovilizadas/química , Albúmina Sérica Bovina/administración & dosificación , Vacunas/administración & dosificación , Calorimetría , Precipitación Química , Fluoresceína-5-Isotiocianato/administración & dosificación , Fluoresceína-5-Isotiocianato/química , Peso Molecular , Concentración Osmolar , Tamaño de la Partícula , Unión Proteica , Albúmina Sérica Bovina/química , Soluciones , Sonicación , Sulfatos/química , Termodinámica , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA