Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; : e202400278, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953596

RESUMEN

Bio-processes based on enzymatic catalysis play a major role in the development of green, sustainable processes, and the discovery of new enzymes is key to this approach. In this work, we analysed ten metagenomes and retrieved 48 genes coding for deoxyribose-5-phosphate aldolases (DERAs, EC 4.1.2.4) using a sequence-based approach. These sequences were recombinantly expressed in Escherichia coli and screened for activity towards a range of aldol additions. Among these, one enzyme, DERA-61, proved to be particularly interesting and catalysed the aldol addition of furfural or benzaldehyde with acetone, butanone and cyclobutanone with unprecedented activity. The product of these reactions, aldols, can find applications as building blocks in the synthesis of biologically active compounds. Screening was carried out to identify optimized reaction conditions targeting temperature, pH, and salt concentrations. Lastly, the kinetics and the stereochemistry of the products were investigated, revealing that DERA-61 and other metagenomic DERAs have superior activity and stereoselectivity when they are provided with non-natural substrates, compared to well-known DERAs.

2.
Adv Synth Catal ; 363(12): 3044-3052, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-34413714

RESUMEN

Enzyme discovery for use in the manufacture of chemicals, requiring high stereoselectivities, continues to be an important avenue of research. Here, a sequence directed metagenomics approach is described to identify short chain carbonyl reductases. PCR from a metagenomic template generated 37 enzymes, with an average 25% sequence identity, twelve of which showed interesting activities in initial screens. Six of the most productive enzymes were then tested against a panel of 21 substrates, including bulkier substrates that have been noted as challenging in biocatalytic reductions. Two enzymes were selected for further studies with the Wieland Miescher ketone. Notably, enzyme SDR-17, when co-expressed with a co-factor recycling system produced the anti-(4aR,5S) isomer in excellent isolated yields of 89% and 99% e.e. These results demonstrate the viability of a sequence directed metagenomics approach for the identification of multiple homologous sequences with low similarity, that can yield highly stereoselective enzymes with applicability in industrial biocatalysis.

3.
J Pure Appl Algebra ; 223(9): 3919-3940, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31534273

RESUMEN

A convex code is a binary code generated by the pattern of intersections of a collection of open convex sets in some Euclidean space. Convex codes are relevant to neuroscience as they arise from the activity of neurons that have convex receptive fields. In this paper, we use algebraic methods to determine if a code is convex. Specifically, we use the neural ideal of a code, which is a generalization of the Stanley-Reisner ideal. Using the neural ideal together with its standard generating set, the canonical form, we provide algebraic signatures of certain families of codes that are non-convex. We connect these signatures to the precise conditions on the arrangement of sets that prevent the codes from being convex. Finally, we also provide algebraic signatures for some families of codes that are convex, including the class of intersection-complete codes. These results allow us to detect convexity and non-convexity in a variety of situations, and point to some interesting open questions.

4.
Sci Rep ; 14(1): 9655, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671016

RESUMEN

The manufacturing of mRNA vaccines relies on cell-free based systems that are easily scalable and flexible compared with the traditional vaccine manufacturing processes. Typically, standard processes yield 2 to 5 g L-1 of mRNA, with recent process optimisations increasing yields to 12 g L-1. However, increasing yields can lead to an increase in the production of unwanted by-products, namely dsRNA. It is therefore imperative to reduce dsRNA to residual levels in order to avoid intensive purification steps, enabling cost-effective manufacturing processes. In this work, we exploit sequence modifications downstream of the T7 RNA polymerase promoter to increase mRNA yields whilst simultaneously minimising dsRNA. In particular, transcription performance was optimised by modifying the sequence downstream of the T7 promoter with additional AT-rich sequences. We have identified variants that were able to produce higher amounts of mRNA (up to 14 g L-1) in 45 min of reaction. These variants exhibited up to a 30% reduction in dsRNA byproduct levels compared to a wildtype T7 promoter, and have similar EGFP protein expression. The results show that optimising the non-coding regions can have an impact on mRNA production yields and quality, reducing overall manufacturing costs.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Regiones Promotoras Genéticas , ARN Mensajero , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Bacteriófago T7/genética , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , Vacunas de ARNm
5.
Catal Sci Technol ; 14(9): 2390-2399, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38721397

RESUMEN

Transaminase enzymes are well established biocatalysts that are used in chemical synthesis due to their beneficial sustainability profile, regio- and stereoselectivity and substrate specificity. Here, the use of a wild-type Chromobacterium violaceum transaminase (CvTAm) in enzyme cascades revealed the formation of a novel hydroxystyryl pyridine product. Subsequent studies established it was a transaminase mediated reaction where it was exhibiting apparent aldolase reactivity. This promiscuous enzyme reaction mechanism was then explored using other wild-type transaminases and via the formation of CvTAm mutants. Application of one pot multi-step enzyme cascades was subsequently developed to produce a range of hydroxystyryl pyridines.

6.
RSC Adv ; 13(15): 9954-9962, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37006375

RESUMEN

Recent advances in the enzymatic degradation of poly(ethylene terphthalate) (PET) have led to a number of PET hydrolytic enzymes and mutants being developed. With the amount of PET building up in the natural world, there is a pressing need to develop scalable methods of breaking down the polymer into its monomers for recycling or other uses. Mechanoenzymatic reactions have gained traction recently as a green and efficient alternative to traditional biocatalytic reactions. For the first time we report increased yields of PET degradation by whole cell PETase enzymes by up to 27-fold by utilising ball milling cycles of reactive aging, when compared with typical solution-based reactions. This methodology leads to up to a 2600-fold decrease in the solvent required when compared with other leading degradation reactions in the field and a 30-fold decrease in comparison to reported industrial scale PET hydrolysis reactions.

7.
Green Chem ; 21(1): 75-86, 2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30930686

RESUMEN

Transaminases remain one of the most promising biocatalysts for use in chiral amine synthesis, however their industrial implementation has been hampered by their general instability towards, for example, high amine donor concentrations and organic solvent content. Herein we describe the identification, cloning and screening of 29 novel transaminases from a household drain metagenome. The most promising enzymes were fully characterised and the effects of pH, temperature, amine donor concentration and co-solvent determined. Several enzymes demonstrated good substrate tolerance as well as an unprecedented robustness for a wild-type transaminase. One enzyme in particular readily accepted IPA as an amine donor giving the same conversion with 2-50 equivalents, as well as being tolerant to a number of co-solvents, and operational in up to 50% DMSO - a characteristic as yet unobserved in a wild-type transaminase. This work highlights the value of using metagenomics for biocatalyst discovery from niche environments, and here has led to the identification of one of the most robust native transaminases described to date, with respect to IPA and DMSO tolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA