Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
BMC Biol ; 19(1): 41, 2021 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-33750380

RESUMEN

BACKGROUND: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. RESULTS: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. CONCLUSIONS: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.


Asunto(s)
Genoma de los Insectos , Interacciones Huésped-Parásitos/genética , Control de Insectos , Muscidae/genética , Animales , Reproducción/genética
2.
BMC Biol ; 18(1): 142, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33070780

RESUMEN

BACKGROUND: The western flower thrips, Frankliniella occidentalis (Pergande), is a globally invasive pest and plant virus vector on a wide array of food, fiber, and ornamental crops. The underlying genetic mechanisms of the processes governing thrips pest and vector biology, feeding behaviors, ecology, and insecticide resistance are largely unknown. To address this gap, we present the F. occidentalis draft genome assembly and official gene set. RESULTS: We report on the first genome sequence for any member of the insect order Thysanoptera. Benchmarking Universal Single-Copy Ortholog (BUSCO) assessments of the genome assembly (size = 415.8 Mb, scaffold N50 = 948.9 kb) revealed a relatively complete and well-annotated assembly in comparison to other insect genomes. The genome is unusually GC-rich (50%) compared to other insect genomes to date. The official gene set (OGS v1.0) contains 16,859 genes, of which ~ 10% were manually verified and corrected by our consortium. We focused on manual annotation, phylogenetic, and expression evidence analyses for gene sets centered on primary themes in the life histories and activities of plant-colonizing insects. Highlights include the following: (1) divergent clades and large expansions in genes associated with environmental sensing (chemosensory receptors) and detoxification (CYP4, CYP6, and CCE enzymes) of substances encountered in agricultural environments; (2) a comprehensive set of salivary gland genes supported by enriched expression; (3) apparent absence of members of the IMD innate immune defense pathway; and (4) developmental- and sex-specific expression analyses of genes associated with progression from larvae to adulthood through neometaboly, a distinct form of maturation differing from either incomplete or complete metamorphosis in the Insecta. CONCLUSIONS: Analysis of the F. occidentalis genome offers insights into the polyphagous behavior of this insect pest that finds, colonizes, and survives on a widely diverse array of plants. The genomic resources presented here enable a more complete analysis of insect evolution and biology, providing a missing taxon for contemporary insect genomics-based analyses. Our study also offers a genomic benchmark for molecular and evolutionary investigations of other Thysanoptera species.


Asunto(s)
Genoma de los Insectos , Rasgos de la Historia de Vida , Thysanoptera/fisiología , Transcriptoma , Animales , Productos Agrícolas , Conducta Alimentaria , Cadena Alimentaria , Inmunidad Innata/genética , Percepción , Filogenia , Reproducción/genética , Thysanoptera/genética , Thysanoptera/inmunología
4.
BMC Genomics ; 19(1): 832, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463532

RESUMEN

BACKGROUND: Having conquered water surfaces worldwide, the semi-aquatic bugs occupy ponds, streams, lakes, mangroves, and even open oceans. The diversity of this group has inspired a range of scientific studies from ecology and evolution to developmental genetics and hydrodynamics of fluid locomotion. However, the lack of a representative water strider genome hinders our ability to more thoroughly investigate the molecular mechanisms underlying the processes of adaptation and diversification within this group. RESULTS: Here we report the sequencing and manual annotation of the Gerris buenoi (G. buenoi) genome; the first water strider genome to be sequenced thus far. The size of the G. buenoi genome is approximately 1,000 Mb, and this sequencing effort has recovered 20,949 predicted protein-coding genes. Manual annotation uncovered a number of local (tandem and proximal) gene duplications and expansions of gene families known for their importance in a variety of processes associated with morphological and physiological adaptations to a water surface lifestyle. These expansions may affect key processes associated with growth, vision, desiccation resistance, detoxification, olfaction and epigenetic regulation. Strikingly, the G. buenoi genome contains three insulin receptors, suggesting key changes in the rewiring and function of the insulin pathway. Other genomic changes affecting with opsin genes may be associated with wavelength sensitivity shifts in opsins, which is likely to be key in facilitating specific adaptations in vision for diverse water habitats. CONCLUSIONS: Our findings suggest that local gene duplications might have played an important role during the evolution of water striders. Along with these findings, the sequencing of the G. buenoi genome now provides us the opportunity to pursue exciting research opportunities to further understand the genomic underpinnings of traits associated with the extreme body plan and life history of water striders.


Asunto(s)
Genoma , Heterópteros/genética , Heterópteros/fisiología , Proteínas de Insectos/genética , Adaptación Fisiológica , Animales , Evolución Molecular , Genómica , Heterópteros/clasificación , Fenotipo , Filogenia
6.
Front Immunol ; 15: 1422206, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39376565

RESUMEN

Tertiary Lymphoid Structures (TLS) are lymphoid structures commonly associated with improved survival of cancer patients and response to immunotherapies. However, conflicting reports underscore the need to consider TLS heterogeneity and multiple features such as TLS size, composition, and maturation status, when assessing their functional impact. With the aim of gaining insights into TLS biology and evaluating the prognostic impact of TLS maturity in Non-Small Cell Lung Carcinoma (NSCLC), we developed a multiplex immunofluorescent (mIF) panel including T cell (CD3, CD8), B cell (CD20), Follicular Dendritic cell (FDC) (CD21, CD23) and mature dendritic cell (DC-LAMP) markers. We deployed this panel across a cohort of primary tumor resections from NSCLC patients (N=406) and established a mIF image analysis workstream to specifically detect TLS structures and evaluate the density of each cell phenotype. We assessed the prognostic significance of TLS size, number, and composition, to develop a TLS scoring system representative of TLS biology within a tumor. TLS relative area, (total TLS area divided by the total tumor area), was the most prognostic TLS feature (C-index: 0.54, p = 0.04). CD21 positivity was a marker driving the favorable prognostic impact, where CD21+ CD23- B cells (C-index: 0.57, p = 0.04) and CD21+ CD23- FDC (C-index: 0.58, p = 0.01) were the only prognostic cell phenotypes in TLS. Combining the three most robust prognostic TLS features: TLS relative area, the density of B cells, and FDC CD21+ CD23- we generated a TLS scoring system that demonstrated strong prognostic value in NSCLC when considering the effect of age, sex, histology, and smoking status. This TLS Score also demonstrated significant association with Immunoscore, EGFR mutational status and gene expression-based B-cell and TLS signature scores. It was not correlated with PD-L1 status in tumor cells or immune cells. In conclusion, we generated a prognostic TLS Score representative of the TLS heterogeneity and maturity undergoing within NSCLC tissues. This score could be used as a tool to explore how TLS presence and maturity impact the organization of the tumor microenvironment and support the discovery of spatial biomarker surrogates of TLS maturity, that could be used in the clinic.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Estructuras Linfoides Terciarias , Humanos , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/mortalidad , Femenino , Masculino , Persona de Mediana Edad , Anciano , Pronóstico , Microambiente Tumoral/inmunología , Biomarcadores de Tumor , Adulto , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Anciano de 80 o más Años
7.
iScience ; 26(10): 107832, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37829199

RESUMEN

Live birth (viviparity) has arisen repeatedly and independently among animals. We sequenced the genome and transcriptome of the viviparous Pacific beetle-mimic cockroach and performed comparative analyses with two other viviparous insect lineages, tsetse flies and aphids, to unravel the basis underlying the transition to viviparity in insects. We identified pathways undergoing adaptive evolution for insects, involved in urogenital remodeling, tracheal system, heart development, and nutrient metabolism. Transcriptomic analysis of cockroach and tsetse flies revealed that uterine remodeling and nutrient production are increased and the immune response is altered during pregnancy, facilitating structural and physiological changes to accommodate and nourish the progeny. These patterns of convergent evolution of viviparity among insects, together with similar adaptive mechanisms identified among vertebrates, highlight that the transition to viviparity requires changes in urogenital remodeling, enhanced tracheal and heart development (corresponding to angiogenesis in vertebrates), altered nutrient metabolism, and shifted immunity in animal systems.

8.
Clin Cancer Res ; 29(3): 560-570, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36455147

RESUMEN

PURPOSE: Tumoral programmed cell death ligand-1 (PD-L1) expression is common in human papillomavirus (HPV)-associated head and neck squamous cell carcinoma (HNSCC). We assessed whether a DNA vaccine targeting HPV-16/18 E6/E7 with IL12 adjuvant (MEDI0457) combined with the PD-L1 inhibitor durvalumab could enhance HPV-specific T-cell response and improve outcomes in recurrent/metastatic HPV-16/18-associated HNSCC. PATIENTS AND METHODS: In this phase Ib/IIa study, immunotherapy-naïve patients with ≥1 previous platinum-containing regimen (neoadjuvant/adjuvant therapy or for recurrent/metastatic disease) received MEDI0457 7 mg intramuscularly with electroporation on weeks 1, 3, 7, and 12, then every 8 weeks, plus durvalumab 1,500 mg intravenously on weeks 4, 8, and 12, then every 4 weeks, until confirmed progression and/or unacceptable toxicity. Coprimary objectives were safety and objective response rate (ORR; H0: ORR ≤ 15%); secondary objectives included 16-week disease control rate (DCR-16), overall survival (OS), and progression-free survival (PFS). RESULTS: Of 35 treated patients, 29 were response evaluable (confirmed HPV-associated disease; received both agents). ORR was 27.6% [95% confidence interval (CI), 12.7-47.2; four complete responses, four partial responses]; responses were independent of PD-L1 tumor-cell expression (≥25% vs. <25%). DCR-16 was 44.8% (95% CI, 26.5-64.3). Median PFS was 3.5 months (95% CI, 1.9-9.0); median OS was 29.2 months (15.2-not calculable). Twenty-eight (80.0%) patients had treatment-related adverse events [grade 3: 5 (14.3%); no grade 4/5], resulting in discontinuation in 2 (5.7%) patients. HPV-16/18-specific T cells increased on treatment; 4 of 8 evaluable patients had a >2-fold increase in tumor-infiltrating CD8+ T cells. CONCLUSIONS: MEDI0457 plus durvalumab was well tolerated. While the primary efficacy endpoint was not reached, clinical benefit was encouraging.


Asunto(s)
Neoplasias de Cabeza y Cuello , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Virus del Papiloma Humano , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Infecciones por Papillomavirus/complicaciones , Papillomavirus Humano 16/genética , Antígeno B7-H1/genética , Papillomavirus Humano 18
9.
PLoS Negl Trop Dis ; 17(4): e0010862, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37043542

RESUMEN

Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.


Asunto(s)
Leishmania , Leishmaniasis Cutánea , Phlebotomus , Psychodidae , Animales , Humanos , Phlebotomus/parasitología , Psychodidae/parasitología , Leishmania/genética , Genómica
10.
Microbiol Resour Announc ; 9(35)2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32855240

RESUMEN

Here, we report the genome sequence and characterization for a Blattabacterium strain isolated from the viviparous cockroach, Diploptera punctata, which provides amino acids critical for intrauterine embryo development. The genome was assembled by sequencing of the cockroach fat body, which is the location of this obligate symbiont.

11.
Insect Biochem Mol Biol ; 120: 103333, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32119906

RESUMEN

Viviparous reproduction is characterized by maternal retention of developing offspring within the reproductive tract during gestation, culminating in live birth. In some cases, a mother will provide nutrition beyond that present in the yolk; this is known as matrotrophic viviparity. While this phenomenon is best associated with mammals, it is observed in insects such as the viviparous cockroach, Diploptera punctata. Female D. punctata carry developing embryos in the brood sac, a reproductive organ that acts as both a uterus and a placenta by protecting and providing a nutritive secretion to the intrauterine developing progeny. While the basic physiology of D. punctata pregnancy has been characterized, little is known about the molecular mechanisms underlying this phenomenon. This study combined RNA-seq analysis, RNA interference, and other assays to characterize molecular and physiological changes associated with D. punctata reproduction. A comparison of four stages of the female reproductive cycle and males revealed unique gene expression profiles corresponding to each stage and between sexes. Differentially regulated transcripts of interest include the previously identified family of milk proteins and transcripts associated with juvenile hormone metabolism. RNA interference and methoprene application experiments established the potential impacts of bothbreakdown and synthesis reduction of juvenile hormone in maintaining pregnancy in D. punctata. These studies provide the comprehensive molecular mechanisms associated with cockroach viviparity, which will be a critical resource for comparative purposes among viviparity in insect systems.


Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Cucarachas/fisiología , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Metiltransferasas/genética , Transcriptoma , Viviparidad de Animales no Mamíferos , Animales , Hidrolasas de Éster Carboxílico/metabolismo , Cucarachas/enzimología , Proteínas de Insectos/metabolismo , Metiltransferasas/metabolismo , Leche/metabolismo , Interferencia de ARN , RNA-Seq , Reproducción , Viviparidad de Animales no Mamíferos/genética
12.
Genome Biol Evol ; 12(7): 1099-1188, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32442304

RESUMEN

The tremendous diversity of Hymenoptera is commonly attributed to the evolution of parasitoidism in the last common ancestor of parasitoid sawflies (Orussidae) and wasp-waisted Hymenoptera (Apocrita). However, Apocrita and Orussidae differ dramatically in their species richness, indicating that the diversification of Apocrita was promoted by additional traits. These traits have remained elusive due to a paucity of sawfly genome sequences, in particular those of parasitoid sawflies. Here, we present comparative analyses of draft genomes of the primarily phytophagous sawfly Athalia rosae and the parasitoid sawfly Orussus abietinus. Our analyses revealed that the ancestral hymenopteran genome exhibited traits that were previously considered unique to eusocial Apocrita (e.g., low transposable element content and activity) and a wider gene repertoire than previously thought (e.g., genes for CO2 detection). Moreover, we discovered that Apocrita evolved a significantly larger array of odorant receptors than sawflies, which could be relevant to the remarkable diversification of Apocrita by enabling efficient detection and reliable identification of hosts.


Asunto(s)
Especiación Genética , Genoma de los Insectos , Interacciones Huésped-Parásitos/genética , Himenópteros/genética , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Elementos Transponibles de ADN , Femenino , Dosificación de Gen , Glicoproteínas/genética , Herbivoria/genética , Inmunidad/genética , Proteínas de Insectos/genética , Masculino , Familia de Multigenes , Receptores Odorantes/genética , Conducta Social , Visión Ocular/genética
13.
Ecol Evol ; 9(18): 10601-10614, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31624569

RESUMEN

The vertical transmission of microbes from mother to offspring is critical to the survival, development, and health of animals. Invertebrate systems offer unique opportunities to conduct studies on microbiome-development-reproduction dynamics since reproductive modes ranging from oviparity to multiple types of viviparity are found in these animals. One such invertebrate is the live-bearing cockroach, Diploptera punctata. Females carry embryos in their brood sac, which acts as the functional equivalent of the uterus and placenta. In our study, 16S rRNA sequencing was used to characterize maternal and embryonic microbiomes as well as the development of the whole-body microbiome across nymphal development. We identified 50 phyla and 121 classes overall and found that mothers and their developing embryos had significantly different microbial communities. Of particular interest is the notable lack of diversity in the embryonic microbiome, which is comprised exclusively of Blattabacteria, indicating microbial transmission of only this symbiont during gestation. Our analysis of postnatal development reveals that significant amounts of non-Blattabacteria species are not able to colonize newborn D. punctata until melanization, after which the microbial community rapidly and dynamically diversifies. While the role of these microbes during development has not been characterized, Blattabacteria must serve a critical role providing specific micronutrients lacking in milk secretions to the embryos during gestation. This research provides insight into the microbiome development, specifically with relation to viviparity, provisioning of milk-like secretions, and mother-offspring interactions during pregnancy.

14.
G3 (Bethesda) ; 9(5): 1313-1320, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30926723

RESUMEN

The flesh fly, Sarcophaga bullata, is a widely-used model for examining the physiology of insect diapause, development, stress tolerance, neurobiology, and host-parasitoid interactions. Flies in this taxon are implicated in myiasis (larval infection of vertebrates) and feed on carrion, aspects that are important in forensic studies. Here we present the genome of S. bullata, along with developmental- and reproduction-based RNA-Seq analyses. We predict 15,768 protein coding genes, identify orthology in relation to closely related flies, and establish sex and developmental-specific gene sets based on our RNA-Seq analyses. Genomic sequences, predicted genes, and sequencing data sets have been deposited at the National Center for Biotechnology Information. Our results provide groundwork for genomic studies that will expand the flesh fly's utility as a model system.


Asunto(s)
Perfilación de la Expresión Génica , Genoma de los Insectos , Genómica , Sarcofágidos/genética , Transcriptoma , Animales , Biología Computacional/métodos , Exones , Perfilación de la Expresión Génica/métodos , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Intrones , Anotación de Secuencia Molecular , Filogenia , Sarcofágidos/clasificación
15.
Genome Biol ; 20(1): 64, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30935422

RESUMEN

BACKGROUND: The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS: The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS: With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.


Asunto(s)
Evolución Molecular , Genoma de los Insectos , Hemípteros/genética , Secuencia de Aminoácidos , Animales , Dedos de Zinc CYS2-HIS2 , Conducta Alimentaria , Dosificación de Gen , Perfilación de la Expresión Génica , Transferencia de Gen Horizontal , Genes Homeobox , Hemípteros/crecimiento & desarrollo , Hemípteros/metabolismo , Pigmentación/genética , Olfato , Factores de Transcripción/genética
16.
Genome Biol ; 20(1): 187, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31477173

RESUMEN

BACKGROUND: Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS: Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS: Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.


Asunto(s)
Genoma de los Insectos , Genómica , Insectos Vectores/genética , Trypanosoma/parasitología , Moscas Tse-Tse/genética , Animales , Elementos Transponibles de ADN/genética , Drosophila melanogaster/genética , Femenino , Regulación de la Expresión Génica , Genes de Insecto , Genes Ligados a X , Geografía , Proteínas de Insectos/genética , Masculino , Mutagénesis Insercional/genética , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos/genética , Homología de Secuencia de Aminoácido , Sintenía/genética , Wolbachia/genética
17.
Sci Rep ; 8(1): 6804, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717151

RESUMEN

Current insights into the mosquito dehydration response rely on studies that examine specific responses but ultimately fail to provide an encompassing view of mosquito biology. Here, we examined underlying changes in the biology of mosquitoes associated with dehydration. Specifically, we show that dehydration increases blood feeding in the northern house mosquito, Culex pipiens, which was the result of both higher activity and a greater tendency to land on a host. Similar observations were noted for Aedes aegypti and Anopheles quadrimaculatus. RNA-seq and metabolome analyses in C. pipiens following dehydration revealed that factors associated with carbohydrate metabolism are altered, specifically the breakdown of trehalose. Suppression of trehalose breakdown in C. pipiens by RNA interference reduced phenotypes associated with lower hydration levels. Lastly, mesocosm studies for C. pipiens confirmed that dehydrated mosquitoes were more likely to host feed under ecologically relevant conditions. Disease modeling indicates dehydration bouts will likely enhance viral transmission. This dehydration-induced increase in blood feeding is therefore likely to occur regularly and intensify during periods when availability of water is low.


Asunto(s)
Aedes/efectos de los fármacos , Anopheles/efectos de los fármacos , Culex/efectos de los fármacos , Conducta Alimentaria/efectos de los fármacos , Modelos Estadísticos , Agua/farmacología , Aedes/fisiología , Animales , Anopheles/fisiología , Metabolismo de los Hidratos de Carbono/genética , Culex/fisiología , Deshidratación/metabolismo , Conducta Alimentaria/fisiología , Femenino , Expresión Génica , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Metaboloma , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Trehalasa/antagonistas & inhibidores , Trehalasa/genética , Trehalasa/metabolismo , Trehalosa/metabolismo , Agua/metabolismo
18.
Sci Rep ; 8(1): 1931, 2018 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-29386578

RESUMEN

The Colorado potato beetle is one of the most challenging agricultural pests to manage. It has shown a spectacular ability to adapt to a variety of solanaceaeous plants and variable climates during its global invasion, and, notably, to rapidly evolve insecticide resistance. To examine evidence of rapid evolutionary change, and to understand the genetic basis of herbivory and insecticide resistance, we tested for structural and functional genomic changes relative to other arthropod species using genome sequencing, transcriptomics, and community annotation. Two factors that might facilitate rapid evolutionary change include transposable elements, which comprise at least 17% of the genome and are rapidly evolving compared to other Coleoptera, and high levels of nucleotide diversity in rapidly growing pest populations. Adaptations to plant feeding are evident in gene expansions and differential expression of digestive enzymes in gut tissues, as well as expansions of gustatory receptors for bitter tasting. Surprisingly, the suite of genes involved in insecticide resistance is similar to other beetles. Finally, duplications in the RNAi pathway might explain why Leptinotarsa decemlineata has high sensitivity to dsRNA. The L. decemlineata genome provides opportunities to investigate a broad range of phenotypes and to develop sustainable methods to control this widely successful pest.


Asunto(s)
Agricultura , Escarabajos/genética , Genoma de los Insectos , Genómica , Solanum tuberosum/parasitología , Animales , Elementos Transponibles de ADN/genética , Evolución Molecular , Femenino , Regulación de la Expresión Génica , Variación Genética , Genética de Población , Interacciones Huésped-Parásitos/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas/genética , Masculino , Anotación de Secuencia Molecular , Familia de Multigenes , Control Biológico de Vectores , Filogenia , Interferencia de ARN , Factores de Transcripción/metabolismo
19.
Nat Commun ; 7: 10165, 2016 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-26836814

RESUMEN

The bed bug, Cimex lectularius, has re-established itself as a ubiquitous human ectoparasite throughout much of the world during the past two decades. This global resurgence is likely linked to increased international travel and commerce in addition to widespread insecticide resistance. Analyses of the C. lectularius sequenced genome (650 Mb) and 14,220 predicted protein-coding genes provide a comprehensive representation of genes that are linked to traumatic insemination, a reduced chemosensory repertoire of genes related to obligate hematophagy, host-symbiont interactions, and several mechanisms of insecticide resistance. In addition, we document the presence of multiple putative lateral gene transfer events. Genome sequencing and annotation establish a solid foundation for future research on mechanisms of insecticide resistance, human-bed bug and symbiont-bed bug associations, and unique features of bed bug biology that contribute to the unprecedented success of C. lectularius as a human ectoparasite.


Asunto(s)
Chinches/genética , Infestaciones Ectoparasitarias , Conducta Alimentaria , Transferencia de Gen Horizontal/genética , Interacciones Huésped-Parásitos/genética , Resistencia a los Insecticidas/genética , Insecticidas , Animales , Genoma , Humanos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA