Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PeerJ ; 11: e16487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38047019

RESUMEN

Background: Considerable resources are spent to track fish movement in marine environments, often with the intent of estimating behavior, distribution, and abundance. Resulting data from these monitoring efforts, including tagging studies and genetic sampling, often can be siloed. For Pacific salmon in the Northeast Pacific Ocean, predominant data sources for fish monitoring are coded wire tags (CWTs) and genetic stock identification (GSI). Despite their complementary strengths and weaknesses in coverage and information content, the two data streams rarely have been integrated to inform Pacific salmon biology and management. Joint, or integrated, models can combine and contextualize multiple data sources in a single statistical framework to produce more robust estimates of fish populations. Methods: We introduce and fit a comprehensive joint model that integrates data from CWT recoveries and GSI sampling to inform the marine life history of Chinook salmon stocks at spatial and temporal scales relevant to ongoing fisheries management efforts. In a departure from similar models based primarily on CWT recoveries, modeled stocks in the new framework encompass both hatchery- and natural-origin fish. We specifically model the spatial distribution and marine abundance of four distinct stocks with spawning locations in California and southern Oregon, one of which is listed under the U.S. Endangered Species Act. Results: Using the joint model, we generated the most comprehensive estimates of marine distribution to date for all modeled Chinook salmon stocks, including historically data poor and low abundance stocks. Estimated marine distributions from the joint model were broadly similar to estimates from a simpler, CWT-only model but did suggest some differences in distribution in select seasons. Model output also included novel stock-, year-, and season-specific estimates of marine abundance. We observed and partially addressed several challenges in model convergence with the use of supplemental data sources and model constraints; similar difficulties are not unexpected with integrated modeling. We identify several options for improved data collection that could address issues in convergence and increase confidence in model estimates of abundance. We expect these model advances and results provide management-relevant biological insights, with the potential to inform future mixed-stock fisheries management efforts, as well as a foundation for more expansive and comprehensive analyses to follow.


Asunto(s)
Oncorhynchus , Salmón , Animales , Salmón/genética , Explotaciones Pesqueras , Océano Pacífico , Especies en Peligro de Extinción
2.
Ecology ; 104(2): e3906, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36320096

RESUMEN

Amplicon-sequence data from environmental DNA (eDNA) and microbiome studies provide important information for ecology, conservation, management, and health. At present, amplicon-sequencing studies-known also as metabarcoding studies, in which the primary data consist of targeted, amplified fragments of DNA sequenced from many taxa in a mixture-struggle to link genetic observations to the underlying biology in a quantitative way, but many applications require quantitative information about the taxa or systems under scrutiny. As metabarcoding studies proliferate in ecology, it becomes more important to develop ways to make them quantitative to ensure that their conclusions are adequately supported. Here we link previously disparate sets of techniques for making such data quantitative, showing that the underlying polymerase chain reaction mechanism explains the observed patterns of amplicon data in a general way. By modeling the process through which amplicon-sequence data arise, rather than transforming the data post hoc, we show how to estimate the starting DNA proportions from a mixture of many taxa. We illustrate how to calibrate the model using mock communities and apply the approach to simulated data and a series of empirical examples. Our approach opens the door to improve the use of metabarcoding data in a wide range of applications in ecology, public health, and related fields.


Asunto(s)
Código de Barras del ADN Taxonómico , Microbiota , Código de Barras del ADN Taxonómico/métodos , ADN/genética , Ecología , Biodiversidad
3.
PLoS One ; 18(5): e0285674, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37167310

RESUMEN

Metabarcoding is a powerful molecular tool for simultaneously surveying hundreds to thousands of species from a single sample, underpinning microbiome and environmental DNA (eDNA) methods. Deriving quantitative estimates of underlying biological communities from metabarcoding is critical for enhancing the utility of such approaches for health and conservation. Recent work has demonstrated that correcting for amplification biases in genetic metabarcoding data can yield quantitative estimates of template DNA concentrations. However, a major source of uncertainty in metabarcoding data stems from non-detections across technical PCR replicates where one replicate fails to detect a species observed in other replicates. Such non-detections are a special case of variability among technical replicates in metabarcoding data. While many sampling and amplification processes underlie observed variation in metabarcoding data, understanding the causes of non-detections is an important step in distinguishing signal from noise in metabarcoding studies. Here, we use both simulated and empirical data to 1) suggest how non-detections may arise in metabarcoding data, 2) outline steps to recognize uninformative data in practice, and 3) identify the conditions under which amplicon sequence data can reliably detect underlying biological signals. We show with both simulations and empirical data that, for a given species, the rate of non-detections among technical replicates is a function of both the template DNA concentration and species-specific amplification efficiency. Consequently, we conclude metabarcoding datasets are strongly affected by (1) deterministic amplification biases during PCR and (2) stochastic sampling of amplicons during sequencing-both of which we can model-but also by (3) stochastic sampling of rare molecules prior to PCR, which remains a frontier for quantitative metabarcoding. Our results highlight the importance of estimating species-specific amplification efficiencies and critically evaluating patterns of non-detection in metabarcoding datasets to better distinguish environmental signal from the noise inherent in molecular detections of rare targets.


Asunto(s)
Código de Barras del ADN Taxonómico , ADN Ambiental , Código de Barras del ADN Taxonómico/métodos , ADN/genética , Reacción en Cadena de la Polimerasa/métodos , Incertidumbre , Biodiversidad
4.
Ecology ; 103(11): e3804, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35804486

RESUMEN

Many ecological data sets are proportional, representing mixtures of constituent elements such as species, populations, or strains. Analyses of proportional data are challenged by categories with zero observations (zeros), all observations (ones), and overdispersion. In lieu of ad hoc data adjustments, we describe and evaluate a zero-and-one inflated Dirichlet regression model, with its corresponding R package (zoid), capable of handling observed data x $$ x $$ consisting of three possible categories: zeros, proportions, or ones. Instead of fitting the model to observations of single biological units (e.g., individual organisms) within a sample, we sum proportional contributions across units and estimate mixture proportions using one aggregated observation per sample. Optional estimation of overdispersion and covariate influences expand model applications. We evaluate model performance, as implemented in Stan, using simulations and two ecological case studies. We show that zoid successfully estimates mixture proportions using simulated data with varying sample sizes and is robust to overdispersion and covariate structure. In empirical case studies, we estimate the composition of a mixed-stock Chinook salmon (Oncorhynchus tshawytscha) fishery and analyze the stomach contents of Atlantic cod (Gadus morhua). Our implementation of the model as an R package facilitates its application to varied ecological data sets composed of proportional observations.


Asunto(s)
Modelos Estadísticos , Programas Informáticos , Animales , Explotaciones Pesqueras , Proyectos de Investigación , Salmón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA