Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Theor Biol ; 448: 17-25, 2018 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-29614264

RESUMEN

Early warning signals of sudden regime shifts are a widely studied phenomenon for their ability to quantify a system's proximity to a tipping point to a new and contrasting dynamical regime. However, this effect has been little studied in the context of the complex interactions between disease dynamics and vaccinating behaviour. Our objective was to determine whether critical slowing down (CSD) occurs in a multiplex network that captures opinion propagation on one network layer and disease spread on a second network layer. We parameterized a network simulation model to represent a hypothetical self-limiting, acute, vaccine-preventable infection with short-lived natural immunity. We tested five different network types: random, lattice, small-world, scale-free, and an empirically derived network. For the first four network types, the model exhibits a regime shift as perceived vaccine risk moves beyond a tipping point from full vaccine acceptance and disease elimination to full vaccine refusal and disease endemicity. This regime shift is preceded by an increase in the spatial correlation in non-vaccinator opinions beginning well before the bifurcation point, indicating CSD. The early warning signals occur across a wide range of parameter values. However, the more gradual transition exhibited in the empirically-derived network underscores the need for further research before it can be determined whether trends in spatial correlation in real-world social networks represent critical slowing down. The potential upside of having this monitoring ability suggests that this is a worthwhile area for further research.


Asunto(s)
Simulación por Computador , Brotes de Enfermedades , Teoría del Juego , Programas de Inmunización , Análisis Espacial , Animales , Ecosistema , Ambiente , Humanos , Vacunación Masiva/psicología , Modelos Biológicos
2.
Theor Ecol ; 14(4): 611-621, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34992693

RESUMEN

Bark beetle outbreaks and forest fires have imposed severe ecological damage and caused billions of dollars in lost resources in recent decades. The impact of such combined disturbances is projected to become more severe, especially as climate change takes its toll on forest ecosystems in the coming years. Here, we investigate the impact of multiple disturbances in a demographically heterogeneous tree population, using an age-structured difference equation model of bark beetle outbreaks and forest fires. We identify two dynamical regimes for beetle and fire dynamics. The model predicts that fire helps dampen beetle outbreaks not only by removing host trees but also by altering the demographic structure of forest stands. We show that a stand thinning protocol, which reduces the population size of the largest few juvenile classes by a small percentage, is able to significantly reduce beetle-induced tree mortality. Our research demonstrates one approach to capturing compound disturbances in a mathematical model.

3.
Lancet Infect Dis ; 21(8): 1097-1106, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33811817

RESUMEN

BACKGROUND: During the COVID-19 pandemic, authorities must decide which groups to prioritise for vaccination in a shifting social-epidemiological landscape in which the success of large-scale non-pharmaceutical interventions requires broad social acceptance. We aimed to compare projected COVID-19 mortality under four different strategies for the prioritisation of SARS-CoV-2 vaccines. METHODS: We developed a coupled social-epidemiological model of SARS-CoV-2 transmission in which social and epidemiological dynamics interact with one another. We modelled how population adherence to non-pharmaceutical interventions responds to case incidence. In the model, schools and workplaces are also closed and reopened on the basis of reported cases. The model was parameterised with data on COVID-19 cases and mortality, SARS-CoV-2 seroprevalence, population mobility, and demography from Ontario, Canada (population 14·5 million). Disease progression parameters came from the SARS-CoV-2 epidemiological literature. We assumed a vaccine with 75% efficacy against disease and transmissibility. We compared vaccinating those aged 60 years and older first (oldest-first strategy), vaccinating those younger than 20 years first (youngest-first strategy), vaccinating uniformly by age (uniform strategy), and a novel contact-based strategy. The latter three strategies interrupt transmission, whereas the first targets a vulnerable group to reduce disease. Vaccination rates ranged from 0·5% to 5% of the population per week, beginning on either Jan 1 or Sept 1, 2021. FINDINGS: Case notifications, non-pharmaceutical intervention adherence, and lockdown undergo successive waves that interact with the timing of the vaccine programme to determine the relative effectiveness of the four strategies. Transmission-interrupting strategies become relatively more effective with time as herd immunity builds. The model predicts that, in the absence of vaccination, 72 000 deaths (95% credible interval 40 000-122 000) would occur in Ontario from Jan 1, 2021, to March 14, 2025, and at a vaccination rate of 1·5% of the population per week, the oldest-first strategy would reduce COVID-19 mortality by 90·8% on average (followed by 89·5% in the uniform, 88·9% in the contact-based, and 88·2% in the youngest-first strategies). 60 000 deaths (31 000-108 000) would occur from Sept 1, 2021, to March 14, 2025, in the absence of vaccination, and the contact-based strategy would reduce COVID-19 mortality by 92·6% on average (followed by 92·1% in the uniform, 91·0% in the oldest-first, and 88·3% in the youngest-first strategies) at a vaccination rate of 1·5% of the population per week. INTERPRETATION: The most effective vaccination strategy for reducing mortality due to COVID-19 depends on the time course of the pandemic in the population. For later vaccination start dates, use of SARS-CoV-2 vaccines to interrupt transmission might prevent more deaths than prioritising vulnerable age groups. FUNDING: Ontario Ministry of Colleges and Universities.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunación/estadística & datos numéricos , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/mortalidad , Humanos , Persona de Mediana Edad , Modelos Teóricos , Adulto Joven
4.
PLoS One ; 16(12): e0261425, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34882755

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0238979.].

5.
PLoS One ; 15(9): e0238979, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32931513

RESUMEN

Invasive pests, such as emerald ash borer or Asian longhorn beetle, have been responsible for unprecedented ecological and economic damage in eastern North America. These and other wood-boring invasive insects can spread to new areas through human transport of untreated firewood. Behaviour, such as transport of firewood, is affected not only by immediate material benefits and costs, but also by social forces. Potential approaches to reduce the spread of wood-boring pests through firewood include raising awareness of the problem and increasing the social costs of the damages incurred by transporting firewood. In order to evaluate the efficacy of these measures, we create a coupled social-ecological model of firewood transport, pest spread, and social dynamics, on a geographical network of camper travel between recreational destinations. We also evaluate interventions aimed to slow the spread of invasive pests with untreated firewood, such as inspections at checkpoints to stop the movement of transported firewood and quarantine of high-risk locations. We find that public information and awareness programs can be effective only if the rate of spread of the pest between and within forested areas is slow. Direct intervention via inspections at checkpoints can only be successful if a high proportion of the infested firewood is intercepted. Patch quarantine is only effective if sufficiently many locations can be included in the quarantine and if the quarantine begins early. Our results indicate that the current, relatively low levels of public outreach activities and lack of adequate funding are likely to render inspections, quarantine and public outreach efforts ineffective.


Asunto(s)
Control de Insectos/métodos , Control de Plagas/métodos , Animales , Acampada/tendencias , Escarabajos , Bosques , Humanos , Insectos , Especies Introducidas/tendencias , Modelos Teóricos , Viaje/tendencias , Madera/parasitología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA