Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35457219

RESUMEN

δ-Viniferin is a resveratrol dimer that possesses potent antioxidant properties and has attracted attention as an ingredient for cosmetic and nutraceutical products. Enzymatic bioconversion and plant callus and cell suspension cultures can be used to produce stilbenes such as resveratrol and viniferin. Here, δ-viniferin was produced by bioconversion from trans-resveratrol using conditioned medium (CM) of grapevine (Vitis labruscana) callus suspension cultures. The CM converted trans-resveratrol to δ-viniferin immediately after addition of hydrogen peroxide (H2O2). Peroxidase activity and bioconversion efficiency in CM increased with increasing culture time. Optimized δ-viniferin production conditions were determined regarding H2O2 concentration, incubation time, temperature, and pH. Maximum bioconversion efficiency reached 64% under the optimized conditions (pH 6.0, 60 °C, 30 min incubation time, 6.8 mM H2O2). In addition, in vitro bioconversion of trans-resveratrol was investigated using CM of different callus suspension cultures, showing that addition of trans-resveratrol and H2O2 to the CM led to production of δ-viniferin via extracellular peroxidase-mediated oxidative coupling of two molecules of trans-resveratrol. We thus propose a simple and low-cost method of δ-viniferin production from trans-resveratrol using CM of plant callus suspension cultures, which may constitute an alternative approach for in vitro bioconversion of valuable molecules.


Asunto(s)
Estilbenos , Vitis , Benzofuranos , Medios de Cultivo Condicionados , Peróxido de Hidrógeno , Peroxidasa , Resorcinoles , Resveratrol , Estilbenos/química , Vitis/química
2.
Int J Med Sci ; 18(14): 3299-3308, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34400899

RESUMEN

Plant tissue culture holds immense potential for the production of secondary metabolites with various physiological functions. We recently established a plant tissue culture system capable of producing secondary metabolites from Aster yomena. This study aimed to uncover the mechanisms underlying the potential therapeutic effects of Aster yomena callus pellet extract (AYC-P-E) on photoaging-induced skin pigmentation. Excessive melanogenesis was induced in B16F10 melanoma cells using α-melanocyte stimulating hormone (α-MSH). The effects of AYC-P-E treatment on melanin biosynthesis inducers and melanin synthesis inhibition were assessed. Based on the results, a clinical study was conducted in subjects with skin pigmentation. AYC-P-E inhibited melanogenesis in α-MSH-treated B16F10 cells, accompanied by decreased mRNA and protein expression of melanin biosynthesis inducers, including cyclic AMP response element-binding protein (CREB), tyrosinase, microphthalmia-associated transcription factor (MITF), tyrosinase related protein-1 (TRP-1), and TRP-2. This anti-melanogenic effect was mediated by mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) phosphorylation. Treatment of subjects with skin pigmentation with AYC-P-E-containing cream formulations resulted in 3.33%, 7.06%, and 8.68% improvement in the melanin levels at 2, 4, and 8 weeks, respectively. Our findings suggest that AYC-P-E inhibits excessive melanogenesis by activating MEK/ERK and AKT signaling, potentiating its cosmetic applications in hyperpigmentation treatment.


Asunto(s)
Aster/química , Dermatosis Facial/tratamiento farmacológico , Hiperpigmentación/tratamiento farmacológico , Melaninas/antagonistas & inhibidores , Extractos Vegetales/farmacología , Adulto , Animales , Línea Celular Tumoral , Femenino , Humanos , Hiperpigmentación/etiología , Hiperpigmentación/fisiopatología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melaninas/biosíntesis , Ratones , Persona de Mediana Edad , Extractos Vegetales/uso terapéutico , Envejecimiento de la Piel/fisiología , Crema para la Piel/farmacología , Crema para la Piel/uso terapéutico , Pigmentación de la Piel/efectos de los fármacos , Pigmentación de la Piel/efectos de la radiación , Resultado del Tratamiento
3.
Cell Mol Life Sci ; 77(22): 4663-4673, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31894360

RESUMEN

The androgen receptor (AR) plays an important role in the pathogenesis and development of prostate cancer (PCa). Mostly, PCa progresses to androgen-independent PCa, which has activated AR signaling from androgen-dependent PCa. Thus, inhibition of AR signaling may be an important therapeutic target in androgen-dependent and castration-resistant PCa. In this study, we determined the anticancer effect of a newly found natural compound, sakurasosaponin (S-saponin), using androgen-dependent and castration-resistant PCa cell lines. S-saponin induces mitochondrial-mediated cell death in both androgen-dependent (LNCaP) and castration-resistant (22Rv1 and C4-2) PCa cells, via AR expression. S-saponin treatment induces a decrease in AR expression in a time- and dose-dependent manner and a potent decrease in the expression of its target genes, including prostate-specific antigen (PSA), transmembrane protease, serin 2 (TMPRSS2), and NK3 homeobox 1 (NKX3.1). Furthermore, S-saponin treatment decreases B-cell lymphoma-extra large (Bcl-xL) and mitochondrial membrane potential, thereby increasing the release of cytochrome c into the cytosol. Moreover, Bcl-xL inhibition and subsequent mitochondria-mediated cell death caused by S-saponin were reversed by Bcl-xL or AR overexpression. Interestingly, S-saponin-mediated cell death was significantly reduced by a reactive oxygen species (ROS) scavenger, N-acetylcystein. Animal xenograft experiments showed that S-saponin treatment significantly reduced tumor growth of AR-positive 22Rv1 xenografts but not AR-negative PC-3 xenografts. Taken together, for the first time, our results revealed that S-saponin induces mitochondrial-mediated cell death in androgen-dependent and castration-resistant cells through regulation of AR mechanisms, including downregulation of Bcl-xL expression and induction of ROS stress by decreasing mitochondrial membrane potential.


Asunto(s)
Antineoplásicos/envenenamiento , Muerte Celular/efectos de los fármacos , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Saponinas/farmacología , Andrógenos/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Desnudos , Células PC-3 , Próstata/efectos de los fármacos , Próstata/metabolismo , Antígeno Prostático Específico/metabolismo , Neoplasias de la Próstata/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína bcl-X/metabolismo
4.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946373

RESUMEN

The oat (Avena sativa L.) is a grain of the Poaceae grass family and contains many powerful anti-oxidants, including avenanthramides as phenolic alkaloids with anti-inflammatory, anti-oxidant, anti-itch, anti-irritant, and anti-atherogenic activities. Here, the treatment of germinating oats with methyl jasmonate (MeJA) or abscisic acid (ABA) resulted in 2.5-fold (582.9 mg/kg FW) and 2.8-fold (642.9 mg/kg FW) increase in avenanthramide content, respectively, relative to untreated controls (232.6 mg/kg FW). Moreover, MeJA and ABA co-treatment synergistically increased avenanthramide production in germinating oats to 1505 mg/kg FW. Individual or combined MeJA and ABA treatment increased the expression of genes encoding key catalytic enzymes in the avenanthramide-biosynthesis pathway, including hydroxycinnamoyl-CoA:hydrocyanthranilate N-hydroxycinnamoyl transferase (HHT). Further analyses showed that six AsHHT genes were effectively upregulated by MeJA or ABA treatment, especially AsHHT4 for MeJA and AsHHT5 for ABA, thereby enhancing the production of all three avenanthramides in germinating oats. Specifically, AsHHT5 exhibited the highest expression following MeJA and ABA co-treatment, indicating that AsHHT5 played a more crucial role in avenanthramide biosynthesis in response to MeJA and ABA co-treatment of germinating oats. These findings suggest that elicitor-mediated metabolite farming using MeJA and ABA could be a valuable method for avenanthramide production in germinating oats.


Asunto(s)
Ácido Abscísico/metabolismo , Acetatos/metabolismo , Avena/crecimiento & desarrollo , Ciclopentanos/metabolismo , Germinación , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , ortoaminobenzoatos/metabolismo , Antioxidantes/metabolismo , Avena/efectos de los fármacos , Producción de Cultivos , Germinación/efectos de los fármacos
5.
Int J Mol Sci ; 21(11)2020 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-32486319

RESUMEN

Pterocarpans are derivatives of isoflavonoids, found in many species of the family Fabaceae. Sophora flavescens Aiton is a promising traditional Asian medicinal plant. Plant cell suspension cultures represent an excellent source for the production of valuable secondary metabolites. Herein, we found that methyl jasmonate (MJ) elicited the activation of pterocarpan biosynthetic genes in cell suspension cultures of S. flavescens and enhanced the accumulation of pterocarpans, producing mainly trifolirhizin, trifolirhizin malonate, and maackiain. MJ application stimulated the expression of structural genes (PAL, C4H, 4CL, CHS, CHR, CHI, IFS, I3'H, and IFR) of the pterocarpan biosynthetic pathway. In addition, the co-treatment of MJ and methyl-ß-cyclodextrin (MeßCD) as a solubilizer exhibited a synergistic effect on the activation of the pterocarpan biosynthetic genes. The maximum level of total pterocarpan production (37.2 mg/g dry weight (DW)) was obtained on day 17 after the application of 50 µM MJ on cells. We also found that the combined treatment of cells for seven days with MJ and MeßCD synergistically induced the pterocarpan production (trifolirhizin, trifolirhizin malonate, and maackiain) in the cells (58 mg/g DW) and culture medium (222.7 mg/L). Noteworthy, the co-treatment only stimulated the elevated extracellular production of maackiain in the culture medium, indicating its extracellular secretion; however, its glycosides (trifolirhizin and trifolirhizin malonate) were not detected in any significant amounts in the culture medium. This work provides new strategies for the pterocarpan production in plant cell suspension cultures, and shows MeßCD to be an effective solubilizer for the extracellular production of maackiain in the cell cultures of S. flavescens.


Asunto(s)
Acetatos/farmacología , Ciclodextrinas/farmacología , Ciclopentanos/farmacología , Oxilipinas/farmacología , Raíces de Plantas/metabolismo , Pterocarpanos/metabolismo , Sophora/efectos de los fármacos , Sophora/metabolismo , Biotecnología , Medios de Cultivo , Sinergismo Farmacológico , Flavonoides/análisis , Glucósidos/análisis , Compuestos Heterocíclicos de 4 o más Anillos/análisis , Espectroscopía de Resonancia Magnética , Malonatos/análisis , Extractos Vegetales/química , Hojas de la Planta/metabolismo , Plantas Medicinales , Pterocarpanos/análisis
6.
Cell Physiol Biochem ; 52(3): 468-485, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873822

RESUMEN

BACKGROUND/AIMS: Breast cancer is a clinically and molecularly heterogeneous disease. Patients with triple-negative breast cancer (TNBC) have poorer outcomes than those with other breast cancer subtypes due to lack of effective molecular targets for therapy. The present study aimed to the identification of estrogen receptor (ER)ß as a novel mitochondrial target in TNBC cells, together with underlying mechanisms. METHODS: Expression of ERß in clinical breast samples were examined by qRT-PCR, immunohistochemistry and immunoblotting. Subcellular distribution and binding of ERß-Grp75 was determined by confocal microscopic analysis, co-immunoprecipitation experiments, and limited-detergent extraction of subcellular organelles. The effect of mitocondrial ERß(mitoERß) overexpression on cell proliferation and cell cycle distribution were assessed CCK-8 assays and FACS. Mitochondrial ROS, membrane potential, and Ca²âº level were measured using the specific fluorescent probes Mito-Sox, TMRE, and Rhod-2AM. The tumorigenic effect of mitoERß overexpression was assessed using an anchorage-independent growth assay, sphere formation and a mouse orthotopic xenograft model. RESULTS: ERß expression was lower in tumor tissue than in adjacent normal tissue of patients with breast cancer, and low levels of mitochondrial ERß (mitoERß) also were associated with increased tumor recurrence after surgery. Overexpression of mitoERß inhibited the proliferation of TNBC cells and tumor masses in an animal model. Moreover, overexpression of mitoERß increased ATP production in TNBC cells and normal breast MCF10A cells, with the latter completely reversed by mitoERß knockdown in MCF10A cells. Grp75 was found to positively regulate ERß translocation into mitochondria via a direct interaction. Coimmunoprecipitation and subcellular fractionation experiments revealed that ERß-Grp75 complex is stable in mitochondria. CONCLUSION: These results suggest that the up-regulation of mitoERß in TNBC cells ensures proper mitochondrial transcription, activating the OXPHOS system to produce ATP. Studying the effects of mitoERß on mitochondrial activity and specific mitochondrial gene expression in breast cancer might help predict tumor recurrence, inform clinical decision-making, and identify novel drug targets in the treatment of TNBC.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Receptor beta de Estrógeno/genética , Regulación Neoplásica de la Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Neoplasias de la Mama Triple Negativas/genética , Animales , Calcio/metabolismo , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Receptor beta de Estrógeno/antagonistas & inhibidores , Receptor beta de Estrógeno/metabolismo , Femenino , Colorantes Fluorescentes/química , Proteínas HSP70 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/patología , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Estadificación de Neoplasias , Fosforilación Oxidativa , Unión Proteica , Transporte de Proteínas , ARN Interferente Pequeño/biosíntesis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Análisis de Supervivencia , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Planta ; 247(4): 973-985, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29313103

RESUMEN

MAIN CONCLUSION: We demonstrated successful overexpression of porcine reproductive and respiratory syndrome virus (PRRSV)-derived GP4D and GP5D antigenic proteins in Arabidopsis. Pigs immunized with transgenic plants expressing GP4D and GP5D proteins generated both humoral and cellular immune responses to PRRSV. Porcine reproductive and respiratory syndrome virus (PRRSV) causes PRRS, the most economically significant disease affecting the swine industry worldwide. However, current commercial PRRSV vaccines (killed virus or modified live vaccines) show poor efficacy and safety due to concerns such as reversion of virus to wild type and lack of cross protection. To overcome these problems, plants are considered a promising alternative to conventional platforms and as a vehicle for large-scale production of recombinant proteins. Here, we demonstrate successful production of recombinant protein vaccine by expressing codon-optimized and transmembrane-deleted recombinant glycoproteins (GP4D and GP5D) from PRRSV in planta. We generated transgenic Arabidopsis plants expressing GP4D and GP5D proteins as candidate antigens. To examine immunogenicity, pigs were fed transgenic Arabidopsis leaves expressing the GP4D and GP5D antigens (three times at 2-week intervals) and then challenged with PRRSV at 6-week post-initial treatment. Immunized pigs showed significantly lower lung lesion scores and reduced viremia and viral loads in the lung than pigs fed Arabidopsis leaves expressing mYFP (control). Immunized pigs also had higher titers of PRRSV-specific antibodies and significantly higher levels of pro-inflammatory cytokines (TNF-α and IL-12). Furthermore, the numbers of IFN-γ+-producing cells were higher, and those of regulatory T cells were lower, in GP4D and GP5D immunized pigs than in control pigs. Thus, plant-derived GP4D and GP5D proteins provide an alternative platform for producing an effective subunit vaccine against PRRSV.


Asunto(s)
Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Arabidopsis/genética , Arabidopsis/metabolismo , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Inmunidad Celular , Inmunidad Humoral , Leucocitos Mononucleares/inmunología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos/inmunología , Porcinos/virología , Vacunas Sintéticas/biosíntesis , Vacunas Sintéticas/inmunología
8.
Plant Mol Biol ; 92(1-2): 117-29, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27338256

RESUMEN

The biosynthesis of flavonoids such as anthocyanin and stilbenes has attracted increasing attention because of their potential health benefits. Anthocyanins and stilbenes share common phenylpropanoid precursor pathways. We previously reported that the overexpression of sweetpotato IbMYB1a induced anthocyanin pigmentation in transgenic tobacco (Nicotiana tabacum) plants. In the present study, transgenic tobacco (Nicotiana tabacum SR1) plants (STS-OX and ROST-OX) expressing the RpSTS gene encoding stilbene synthase from rhubarb (Rheum palmatum L. cv. Jangyeop) and the RpSTS and VrROMT genes encoding resveratrol O-methyltransferase from frost grape (Vitis riparia) were generated under the control of 35S promoter. Phenotypic alterations in floral organs, such as a reduction in floral pigments and male sterility, were observed in STS-OX transgenic tobacco plants. However, we failed to obtain STS-OX and ROST-OX plants with high levels of resveratrol compounds. Therefore, to improve the production of resveratrol derivatives in plants, we cross-pollinated flowers of STS-OX or ROST-OX and IbMYB1a-OX transgenic lines (SM and RSM). Phenotypic changes in vegetative and reproductive development of SM and RSM plants were observed. Furthermore, by HPLC and LC-MS analyses, we found enhanced production of resveratrol derivatives such as piceid, piceid methyl ether, resveratrol methyl ether O-hexoside, and 5-methyl resveratrol-3,4'-O-ß-D-diglucopyranoside in SM and RSM cross-pollinated lines. Here, total contents of trans- and cis-piceids ranged from approximately 104-240 µg/g fresh weight in SM (F2). Collectively, we suggest that coexpression of RpSTS and IbMYB1a via cross-pollination can induce enhanced production of resveratrol compounds in plants by increasing metabolic flux into stilbenoid biosynthesis.


Asunto(s)
Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estilbenos/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Polinización/genética , Polinización/fisiología , Resveratrol , Nicotiana/genética
9.
Gastroenterology ; 149(4): 1006-16.e9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26091938

RESUMEN

BACKGROUND & AIMS: Reagents designed to target cancer stem cells (CSCs) could reduce tumor growth, recurrence, and metastasis. We investigated the mitochondrial features of CSCs. METHODS: Colon adenocarcinoma fragments were obtained from 8 patients during surgery at Busan Paik Hospital in Korea. We used immunohistochemistry and quantitative polymerase chain reaction to compare expression of mitochondrial peroxiredoxin 3 (PRX3) in CD133(+)CD44(+) Lgr5(+)cells (CSCs) vs CD133(-)CD44(-)Lgr5(-) colon tumor cells (non-CSCs). Cell survival and expression of mitochondrial-related genes were analyzed in the presence of 5-fluorouracil and/or antimycin A. We used small-interfering and short-hairpin RNAs and an overexpression vector to study PRX3, which functions in the mitochondria. CD133(+) cells with PRX3 knockdown or overexpressing PRX3 were grown as xenograft tumors in immunocompromised mice. Metastasis was studied after injection of tumor cells in spleens of mice. We used chromatin immunoprecipitation and reporter assays to characterize transcriptional regulation of PRX3 by forkhead box protein 1. RESULTS: CSCs had a higher mitochondrial membrane potential and increased levels of adenosine triphosphate, Ca(2+), reactive oxygen species, and oxygen consumption than non-CSCs. Levels of PRX3 were increased in colon CSCs compared with non-CSCs. PRX3 knockdown reduced the viability of CSCs, but non non-CSCs, by inducing mitochondrial dysfunction. PRX3 knockdown reduced growth of CSCs as xenograft tumors or metastases in mice. The expression of FOXM1 activated transcription of PRX3 and expression of CD133 in colon CSCs. CONCLUSIONS: Human colon CSCs have increased mitochondrial function compared with colon tumor cells without stem cell properties. Colon CSCs overexpress the mitochondrial gene PRX3, which is required for maintenance of mitochondrial function and tumorigenesis, and is regulated by forkhead box protein 1, which also regulates expression of CD133 in these cells. These proteins might be therapeutic targets for colorectal cancer.


Asunto(s)
Adenocarcinoma/metabolismo , Antineoplásicos/farmacología , Neoplasias del Colon/metabolismo , Factores de Transcripción Forkhead/metabolismo , Mitocondrias/metabolismo , Células Madre Neoplásicas/metabolismo , Peroxiredoxina III/metabolismo , Antígeno AC133 , Adenocarcinoma/genética , Adenocarcinoma/secundario , Adenocarcinoma/terapia , Adenosina Trifosfato/metabolismo , Adulto , Anciano , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Calcio/metabolismo , Supervivencia Celular , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Neoplasias del Colon/terapia , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos , Metabolismo Energético , Femenino , Proteína Forkhead Box M1 , Factores de Transcripción Forkhead/genética , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/genética , Glicoproteínas/metabolismo , Células HCT116 , Células HT29 , Humanos , Potencial de la Membrana Mitocondrial , Ratones Endogámicos NOD , Ratones SCID , Persona de Mediana Edad , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Consumo de Oxígeno , Péptidos/genética , Péptidos/metabolismo , Peroxiredoxina III/genética , Interferencia de ARN , Tratamiento con ARN de Interferencia , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Plant J ; 77(5): 737-47, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24387668

RESUMEN

Light is essential for plant survival; as such, plants flexibly adjust their growth and development to best harvest light energy. Brassinosteroids (BRs), plant growth-promoting steroid hormones, are essential for this plasticity of development. However, the precise mechanisms underlying BR-mediated growth under different light conditions remain largely unknown. Here, we show that darkness increases the activity of the BR-specific transcription factor, BZR1, by decreasing the phosphorylated (inactive) form of BZR1 in a proteasome-dependent manner. We observed that COP1, a dark-activated ubiquitin ligase, captures and degrades the inactive form of BZR1. In support of this, BZR1 is abundant in the cop1-4 mutant. The removal of phosphorylated BZR1 in darkness increases the ratio of dephosphorylated to phosphorylated forms of BZR1, thus increasing the chance of active homodimers forming between dephosphorylated BZR1 proteins. Furthermore, a transcriptome analysis revealed the identity of genes that are likely to contribute to the differential growth of hypocotyls in light conditions. Transgenic misexpression of three genes under the 35S promoter in light conditions resulted in elongated petioles and hypocotyls. Our results suggest that light conditions directly control BR signaling by modulating BZR1 stability, and consequently by establishing light-dependent patterns of hypocotyl growth in Arabidopsis.


Asunto(s)
Arabidopsis/fisiología , Brasinoesteroides/metabolismo , Oscuridad , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN , Dimerización , Mutación , Proteínas Nucleares/metabolismo , Fosforilación , Fitocromo B/genética , Transducción de Señal , Ubiquitina-Proteína Ligasas
11.
Physiol Plant ; 153(4): 525-37, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25220246

RESUMEN

The R2R3-type protein IbMYB1 is a key regulator of anthocyanin biosynthesis in the storage roots of sweet potato [Ipomoea batatas (L.) Lam]. Previously, we demonstrated that IbMYB1 expression stimulated anthocyanin pigmentation in tobacco leaves and Arabidopsis. Here, we generated dual-pigmented transgenic sweet potato plants that accumulated high levels of both anthocyanins and carotenoids in a single sweet potato storage root. An orange-fleshed cultivar with high carotenoid levels was transformed with the IbMYB1 gene under the control of either the storage root-specific sporamin 1 (SPO1) promoter or the oxidative stress-inducible peroxidase anionic 2 (SWPA2) promoter. The SPO1-MYB transgenic lines exhibited higher anthocyanin levels in storage roots than empty vector control (EV) or SWPA2-MYB plants, but carotenoid content was unchanged. SWPA2-MYB transgenic lines exhibited higher levels of both anthocyanin and carotenoids than EV plants. Analysis of hydrolyzed anthocyanin extracts indicated that cyanidin and peonidin predominated in both overexpression lines. Quantitative reverse transcription-polymerase chain reaction analysis demonstrated that IbMYB1 expression in both IbMYB1 transgenic lines strongly induced the upregulation of several genes in the anthocyanin biosynthetic pathway, whereas the expression of carotenoid biosynthetic pathway genes varied between transgenic lines. Increased anthocyanin levels in transgenic plants also promoted the elevation of proanthocyanidin and total phenolic levels in fresh storage roots. Consequently, all IbMYB1 transgenic plants displayed much higher antioxidant activities than EV plants. In field cultivations, storage root yields varied between the transgenic lines. Taken together, our results indicate that overexpression of IbMYB1 is a highly promising strategy for the generation of transgenic plants with enhanced antioxidant capacity.


Asunto(s)
Antocianinas/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Ipomoea batatas/genética , Proteínas de Plantas/genética , Expresión Génica , Ipomoea batatas/metabolismo , Especificidad de Órganos , Oxidación-Reducción , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Nicotiana/genética , Nicotiana/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Korean J Physiol Pharmacol ; 19(5): 389-99, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26330751

RESUMEN

Zinc has been considered as a vital constituent of proteins, including enzymes. Mobile reactive zinc (Zn(2+)) is the key form of zinc involved in signal transductions, which are mainly driven by its binding to proteins or the release of zinc from proteins, possibly via a redox switch. There has been growing evidence of zinc's critical role in cell signaling, due to its flexible coordination geometry and rapid shifts in protein conformation to perform biological reactions. The importance and complexity of Zn(2+) activity has been presumed to parallel the degree of calcium's participation in cellular processes. Whole body and cellular Zn(2+) levels are largely regulated by metallothioneins (MTs), Zn(2+) importers (ZIPs), and Zn(2+) transporters (ZnTs). Numerous proteins involved in signaling pathways, mitochondrial metabolism, and ion channels that play a pivotal role in controlling cardiac contractility are common targets of Zn(2+). However, these regulatory actions of Zn(2+) are not limited to the function of the heart, but also extend to numerous other organ systems, such as the central nervous system, immune system, cardiovascular tissue, and secretory glands, such as the pancreas, prostate, and mammary glands. In this review, the regulation of cellular Zn(2+) levels, Zn(2+)-mediated signal transduction, impacts of Zn(2+) on ion channels and mitochondrial metabolism, and finally, the implications of Zn(2+) in health and disease development were outlined to help widen the current understanding of the versatile and complex roles of Zn(2+).

13.
J Agric Food Chem ; 71(27): 10393-10402, 2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37358831

RESUMEN

The low levels of bioactive metabolites in target plants present a bottleneck for the functional food industry. The major disadvantage of soy leaves is their low phytoestrogen content despite the fact that these leaves are an enriched source of flavonols. Our study demonstrated that simple foliar spraying with 1-aminocyclopropane-1-carboxylic acid (ACC) significantly enhanced the phytoestrogen contents of the whole soy plant, including its leaves (27-fold), stalks (3-fold), and roots (4-fold). In particular, ACC continued to accelerate the biosynthesis pathway of isoflavones in the leaves for up to 3 days after treatment, from 580 to 15,439 µg/g. The detailed changes in the levels of this metabolite in soy leaves are disclosed by quantitative and metabolomic analyses based on HPLC and UPLC-ESI-TOF/MS. The PLS-DA score plot, S-plot, and heatmap provide comprehensive evidence to clearly distinguish the effect of ACC treatment. ACC was also proved to activate a series of structural genes (CHS, CHR, CHI, IFS, HID, IF7GT, and IF7MaT) along the isoflavone biosynthesis pathway time-dependently. In particular, ACC oxidase genes were turned on 12 h after ACC treatment, which was rationalized to start activating the synthetic pathway of isoflavones.


Asunto(s)
Isoflavonas , Isoflavonas/metabolismo , Glycine max/química , Fitoestrógenos , Vías Biosintéticas , Aceleración
14.
Plants (Basel) ; 11(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36501391

RESUMEN

Class III peroxidases (PRXs) are involved in a broad spectrum of physiological and developmental processes throughout the life cycle of plants. However, the specific function of each PRX member in the family remains largely unknown. In this study, we selected four class III peroxidase genes (PRX2/ATPRX1, PRX8, PRX35, and PRX73) from a previous genome-wide transcriptome analysis, and performed phenotypic and morphological analyses, including histochemical staining, in PRX2RNAi, PRX8RNAi, PRX35RNAi, and PRX73RNAi plants. The reduced mRNA levels of corresponding PRX genes in PRX2RNAi, PRX8RNAi, PRX35RNAi, and PRX73RNAi seedlings resulted in elongated hypocotyls and roots, and slightly faster vegetative growth. To investigate internal structural changes in the vasculature, we performed histochemical staining, which revealed alterations in cell wall structures in the main vasculature of hypocotyls, stems, and roots of each PRXRNAi plant compared to wild-type (Col-0) plants. Furthermore, we found that PRX35RNAi plants displayed the decrease in the cell wall in vascular regions, which are involved in downregulation of lignin biosynthesis and biosynthesis-regulated genes' expression. Taken together, these results indicated that the reduced expression levels of PRX2/ATPRX1, PRX8, PRX35, and PRX73 affected hypocotyl and root elongation, vegetative growth, and the vasculature structures in hypocotyl, stem, and root tissues, suggesting that the four class III PRX genes play roles in plant developmental processes.

15.
Biomedicines ; 10(2)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35203508

RESUMEN

Immune checkpoint inhibitor therapy has proven efficacy in a subset of colon cancer patients featuring a deficient DNA mismatch repair system or a high microsatellite instability profile. However, there is high demand for more effective biomarkers to expand the colon cancer population responding to ICI therapy. PBK/TOPK, a serine/threonine kinase, plays a role in cell cycle regulation and mitotic progression. Here, we investigated the correlation between PBK/TOPK expression and tumor immunity and its prognostic value in colon cancer. Based on large-scale bioinformatics analysis, we discovered that elevated PBK/TOPK expression predicted a favorable outcome in patients with colon cancer and was positively associated with immune infiltration levels of CD8+ T cells, CD4+ T cells, natural killer cells, and M1 macrophages. In contrast, a negative correlation was found between PBK/TOPK expression and immune suppressor cells, including regulatory T cells and M2 macrophages. Furthermore, the expression of PBK/TOPK was correlated with the expression of T-cell cytotoxicity genes in colon cancer. Additionally, high PBK/TOPK expression was associated with mutations in DNA damage repair genes, and thus with increased tumor mutation and neoantigen burden. These findings suggest that PBK/TOPK may serve as a prognostic and predictive biomarker for immunotherapy in colon cancer.

16.
Cells ; 11(18)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36139376

RESUMEN

Plant-derived extracellular vesicles, (EVs), have recently gained attention as potential therapeutic candidates. However, the varying properties of plants that are dependent on their growth conditions, and the unsustainable production of plant-derived EVs hinder drug development. Herein, we analyzed the secondary metabolites of Aster yomena callus-derived EVs (AYC-EVs) obtained via plant tissue cultures and performed an immune functional assay to assess the potential therapeutic effects of AYC-EVs against inflammatory diseases. AYC-EVs, approximately 225 nm in size, were isolated using tangential flow filtration (TFF) and cushioned ultracentrifugation. Metabolomic analysis, using ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF/MS), revealed that AYC-EVs contained 17 major metabolites. AYC-EVs inhibited the phenotypic and functional maturation of LPS-treated dendritic cells (DCs). Furthermore, LPS-treated DCs exposed to AYC-EVs showed decreased immunostimulatory capacity during induction of CD4+ and CD8+ T-cell proliferation and activation. AYC-EVs inhibited T-cell reactions associated with the etiology of asthma in asthmatic mouse models and improved various symptoms of asthma. This regulatory effect of AYC-EVs resembled that of dexamethasone, which is currently used to treat inflammatory diseases. These results provide a foundation for the development of plant-derived therapeutic agents for the treatment of various inflammatory diseases, as well as providing an insight into the possible mechanisms of action of AYC-EVs.


Asunto(s)
Asma , Vesículas Extracelulares , Animales , Proliferación Celular , Dexametasona/farmacología , Dexametasona/uso terapéutico , Vesículas Extracelulares/fisiología , Lipopolisacáridos/farmacología , Ratones
17.
Artículo en Inglés | MEDLINE | ID: mdl-33799474

RESUMEN

Postpartum women experience various changes in their physical and psychological health and in their relationships with their spouse and newborn. This study aimed to identify and evaluate the factors that affect the quality of life (QoL) of women within six weeks after childbirth. A prospective, cross-sectional correlational study was used. A convenience sample of 179 postpartum women was recruited from four postpartum care centers in South Korea. Participants completed structured questionnaires on postpartum fatigue, postpartum depression, marital intimacy, breastfeeding adaptation, and quality of life. Marital intimacy (ß = 0.466, p < 0.001) was the most influencing factor on the QoL of women during the postpartum period. In descending order, postpartum fatigue (ß = -0.192, p = 0.001), postpartum depression (ß = -0.190, p = 0.001), breastfeeding adaptation (ß = 0.163, p = 0.002), and occupation (ß = 0.163, p = 0.004) all had a significant influence on QoL (F = 32.09, p < 0.001), and the overall explanatory power was 63.6%. It is necessary to assess and consider the physical, psychological, relational, and demographic factors of women during the early postpartum period. Comprehensive interventions need to be developed to improve the QoL of women during the postpartum period.


Asunto(s)
Periodo Posparto , Calidad de Vida , Estudios Transversales , Femenino , Humanos , Recién Nacido , Embarazo , Estudios Prospectivos , República de Corea/epidemiología , Encuestas y Cuestionarios
18.
Plants (Basel) ; 10(4)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808279

RESUMEN

Aster yomena (A. yomena) extract has anti-inflammatory, antioxidant, anti-asthma, and anti-atopic effects. However, the commercial use of A. yomena extract requires a long processing time with specific processing steps (including heat treatment and ethanol precipitation), and there are various environmental problems. We aimed to build a system to produce A. yomena extract by culturing the callus in a bioreactor that can allow rapid process scale-up to test the effect of extract (AYC-CS-E) isolated from culture supernatant of A. yomena callus on photoaging of human keratinocytes (HaCaT) caused by ultraviolet B (UVB) exposure. Through screening analysis based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF-MS), 17 major metabolites were tentatively identified from AYC-CS-E for the first time. The suppression of cell proliferation caused by UVB was effectively alleviated in UVB-irradiated HaCaT cells treated with AYC-CS-E. Treatment with AYC-CS-E strongly induced the formation of type I procollagen and the inhibition of elastase in UVB-irradiated HaCaT cells and significantly reduced the expression of matrix metalloproteinase (MMP)-1. In addition, treatment of UVB-irradiated HaCaT cells with AYC-CS-E effectively improved various factors associated with an inflammatory reaction, skin damage recovery, skin moisture retention, and hyper-keratinization caused by photoaging, such as reactive oxygen species (ROS), pro-inflammatory cytokines, transforming growth factor beta (TGF-ß), MMP-3, MMP-9, filaggrin, hyaluronic acid synthase 2 (HAS-2), keratin 1 (KRT-1), nuclear factor-kappa B (NF-κB), and nuclear factor erythroid 2-related factor 2 (Nrf2) at the gene and protein levels. These results suggest that AYC-CS-E can be used as a cosmetic ingredient for various skin diseases caused by photoaging, and the current callus culture system can be used commercially to supply cosmetic ingredients.

19.
Redox Biol ; 48: 102190, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34798428

RESUMEN

Cancer stem cells (CSCs) initiate tumor formation and are known to be resistant to chemotherapy. A metabolic alteration in CSCs plays a critical role in stemness and survival. However, the association between mitochondrial energy metabolism and the redox system remains undefined in colon CSCs. In this study, we assessed the role of the Sulfiredoxin-Peroxiredoxin (Srx-Prx) redox system and mitochondrial oxidative phosphorylation (OXPHOS) in maintaining the stemness and survival of colon CSCs. Notably, Srx contributed to the stability of PrxI, PrxII, and PrxIII proteins in colon CSCs. Increased Srx expression promoted the stemness and survival of CSCs and was important for the maintenance of the mitochondrial OXPHOS system. Furthermore, Nrf2 and FoxM1 led to OXPHOS activation and upregulated expression of Srx-Prx redox system-related genes. Therefore, the Nrf2/FoxM1-induced Srx-Prx redox system is a potential therapeutic target for eliminating CSCs in colon cancer.

20.
Plant Physiol Biochem ; 162: 556-563, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33773231

RESUMEN

Stilbenes, including resveratrol and viniferins, a small family of polyphenols, are considered the most important phytoalexin group in Vitis species. In a previous study, we found that co-treatment of methyl jasmonate (MJ) and stevioside (STE) resulted in enhanced extracellular production of viniferins in grapevine cell suspension cultures. Thus, to further understand the mechanisms of viniferin production in grapevine cell cultures, we performed transcriptome analysis and isolated seven candidates of grapevine peroxidase genes (VlAPX6, VlGPX5, VlPRX13, VlPRX21, VlPRX35, VlPRX40, and VlPRX50). Bioconversion of trans-resveratrol to δ-viniferin was examined using crude protein extracts isolated from agroinfiltration-based transient expression of VlPRXs in Nicotiana benthamiana. In addition, we found that crude protein extracts from VlPRX21-, VlPRX35-, and VlPRX40-overexpressing (OX) transgenic Arabidopsis plants led to the conversion of trans-resveratrol to δ-viniferin. We found that in vitro experiments with crude protein extracts from VlPRX21-OX and VlPRX35-OX Arabidopsis plants catalyzed the dimerization of trans-resveratrol to δ-viniferin. Our results suggest that VlPRX21 and VlPRX35 encode functional grapevine class III peroxidases and catalyze the oxidative dimerization of trans-resveratrol to form δ-viniferin in grapevine.


Asunto(s)
Arabidopsis , Estilbenos , Vitis , Arabidopsis/genética , Benzofuranos , Resorcinoles , Resveratrol , Vitis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA