RESUMEN
BACKGROUND: Mycorrhiza is a ubiquitous form of symbiosis based on the mutual, beneficial exchange of resources between roots of autotrophic (AT) plants and heterotrophic soil fungi throughout a complex network of fungal mycelium. Mycoheterotrophic (MH) and mixotrophic (MX) plants can parasitise this system, gaining all or some (respectively) required nutrients without known reciprocity to the fungus. We applied, for the first time, an ecological stoichiometry framework to test whether trophic mode of plants influences their elemental carbon (C), nitrogen (N), and phosphorus (P) composition and may provide clues about their biology and evolution within the framework of mycorrhizal network functioning. RESULTS: We analysed C:N:P stoichiometry of 24 temperate orchid species and P concentration of 135 species from 45 plant families sampled throughout temperate and intertropical zones representing the three trophic modes (AT, MX and MH). Welch's one-way ANOVA and PERMANOVA were used to compare mean nutrient values and their proportions among trophic modes, phylogeny, and climate zones. Nutrient concentration and stoichiometry significantly differentiate trophic modes in orchids. Mean foliar C:N:P stoichiometry showed a gradual increase of N and P concentration and a decrease of C: nutrients ratio along the trophic gradient AT < MX < MH, with surprisingly high P requirements of MH orchids. Although P concentration in orchids showed the trophy-dependent pattern regardless of climatic zone, P concentration was not a universal indicator of trophic modes, as shown by ericaceous MH and MX plants. CONCLUSION: The results imply that there are different evolutionary pathways of adaptation to mycoheterotrophic nutrient acquisition, and that the high nutrient requirements of MH orchids compared to MH plants from other families may represent a higher cost to the fungal partner and consequently lead to the high fungal specificity observed in MH orchids.
Asunto(s)
Carbono , Micorrizas , Nitrógeno , Fósforo , Aclimatación , Análisis de VarianzaRESUMEN
Network analysis is an effective tool to describe and quantify the ecological interactions between plants and root-associated fungi. Mycoheterotrophic plants, such as orchids, critically rely on mycorrhizal fungi for nutrients to survive, so investigating the structure of those intimate interactions brings new insights into the plant community assembly and coexistence. So far, there is little consensus on the structure of those interactions, described either as nested (generalist interactions), modular (highly specific interactions) or of both topologies. Biotic factors (e.g., mycorrhizal specificity) were shown to influence the network structure, while there is less evidence of abiotic factor effects. By using next-generation sequencing of the orchid mycorrhizal fungal (OMF) community associated to with plant individuals belonging to 17 orchid species, we assessed the structure of four orchid-OMF networks in two European regions under contrasting climatic conditions (Mediterranean vs. Continental). Each network contained four to 12 co-occurring orchid species, including six species shared among the regions. All four networks were both nested and modular, and fungal communities were different between co-occurring orchid species, despite multiple sharing of fungi across some orchids. Co-occurring orchid species growing in Mediterranean climate were associated with more dissimilar fungal communities, consistent with a more modular network structure compared to the Continental ones. OMF diversity was comparable among orchid species since most orchids were associated with multiple rarer fungi and with only a few highly dominant ones in the roots. Our results provide useful highlights into potential factors involved in structuring plant-mycorrhizal fungus interactions in different climatic conditions.
Asunto(s)
Micorrizas , Orchidaceae , Humanos , Micorrizas/genética , Orchidaceae/genética , Orchidaceae/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Plantas , Simbiosis/genética , FilogeniaRESUMEN
BACKGROUND AND AIMS: Historical changes in environmental conditions and colonization-extinction dynamics have a direct impact on the genetic structure of plant populations. However, understanding how past environmental conditions influenced the evolution of species with high gene flow is challenging when signals for genetic isolation and adaptation are swamped by gene flow. We investigated the spatial distribution and genetic structure of the widespread terrestrial orchid Epipactis helleborine to identify glacial refugia, characterize postglacial population dynamics and assess its adaptive potential. METHODS: Ecological niche modelling was used to locate possible glacial refugia and postglacial recolonization opportunities of E. helleborine. A large single-nucleotide polymorphism (SNP) dataset obtained through genotyping by sequencing was used to define population genetic diversity and structure and to identify sources of postglacial gene flow. Outlier analyses were used to elucidate how adaptation to the local environment contributed to population divergence. KEY RESULTS: The distribution of climatically suitable areas was restricted during the Last Glacial Maximum to the Mediterranean, south-western Europe and small areas in the Alps and Carpathians. Within-population genetic diversity was high in E. helleborine (mean expected heterozygosity, 0.373 ± 0.006; observed heterozygosity, 0.571 ± 0.012; allelic richness, 1.387 ± 0.007). Italy and central Europe are likely to have acted as important genetic sources during postglacial recolonization. Adaptive SNPs were associated with temperature, elevation and precipitation. CONCLUSIONS: Forests in the Mediterranean and Carpathians are likely to have acted as glacial refugia for Epipactis helleborine. Postglacial migration northwards and to higher elevations resulted in the dispersal and diversification of E. helleborine in central Europe and Italy, and to geographical isolation and divergent adaptation in Greek and Italian populations. Distinguishing adaptive from neutral genetic diversity allowed us to conclude that E. helleborine has a high adaptive potential to climate change and demonstrates that signals of adaptation and historical isolation can be identified even in species with high gene flow.
Asunto(s)
Ecosistema , Variación Genética , Europa (Continente) , Genética de Población , Estructuras GenéticasRESUMEN
Many orchid species are threatened, while some disappear from their natural habitats without obvious reasons. Eutrophication has been suggested as a possible factor and nitrate, which is able to suppress non-symbiotic orchid seed germination even at very low concentrations, and could pose a serious threat for natural orchid populations. Early ontogenesis of all orchids entirely depends on orchid mycorrhizal symbiosis, and at this initial mycoheterotrophic stage, many terrestrial green orchids associate with polyphyletic fungal symbionts (i.e., mycobionts), collectively called "rhizoctonias." We asked whether these fungi might also have some non-nutritional roles, i.e., whether they might confer resistance to eutrophication. To test this hypothesis, we co-cultivated seeds of the terrestrial orchid Dactylorhiza majalis with five rhizoctonias (two Tulasnella, two Ceratobasidium and one Serendipita isolate) at various ecologically meaningful nitrate concentrations (0 to 100 mg/L). With the exception of one Tulasnella isolate, all mycobionts supported the growth of protocorms and formed orchid mycorrhiza, i.e., intracellular hyphal pelotons, in the protocorms. Nitrate suppressed asymbiotic, as well as symbiotic, seed germination in all but one fungal treatment; the seeds co-cultivated with one of the Ceratobasidium isolates were indeed insensitive to nitrate. We conclude that nitrates also negatively affect symbiotic orchid germination, depending on the available compatible mycobionts. Thus, eutrophication with nitrate may decrease the number of orchid mycobionts capable of supporting seed germination.
Asunto(s)
Micorrizas , Orchidaceae , Germinación , Nitratos , Semillas , SimbiosisRESUMEN
Species-rich seminatural grasslands in Central Europe have suffered a dramatic loss of biodiversity due to conversion to arable land, but vast areas are being restored. Population recovery of orchids, which depend on mycorrhizal fungi for germination, is however limited. We hypothesised that ploughing and fertilisation caused shifts in orchid mycorrhizal communities in soil and restricted orchid germination. We examined edaphic conditions in 60 restored and seminatural grasslands, and germination success in 10 restored grasslands. Using a newly designed primer, we screened the composition of rhizoctonias in soil, seedlings and roots of seven orchid species. Seminatural and restored grasslands differed significantly in nutrient amounts and rhizoctonia assemblages in soil. While Serendipitaceae prevailed in seminatural grasslands with a higher organic matter content, Ceratobasidiaceae were more frequent in phosphorus-rich restored grasslands with increased abundance on younger restored sites. Tulasnellaceae displayed no preference. Germination success in restored grasslands differed significantly between orchid species; two mycorrhizal generalist species germinated with a broad range of rhizoctonias at most restored grasslands, while germination success of specialists was low. Past agricultural practices have a long-lasting effect on soil conditions and orchid mycorrhizal communities. Altered mycorrhizal availability may be the main reason for low germination success of specialist orchid species.
Asunto(s)
Micorrizas , Orchidaceae , Europa (Continente) , Germinación , Pradera , Rhizoctonia , EspecializaciónRESUMEN
In angiosperms, genome size and nucleobase composition (GC content) exhibit pronounced variation with possible adaptive consequences. The hyperdiverse orchid family possessing the unique phenomenon of partial endoreplication (PE) provides a great opportunity to search for interactions of both genomic traits with the evolutionary history of the family. Using flow cytometry, we report values of both genomic traits and the type of endoreplication for 149 orchid species and compare these with a suite of life-history traits and climatic niche data using phylogeny-based statistics. The evolution of genomic traits was further studied using the Brownian motion (BM) and Ornstein-Uhlenbeck (OU) models to access their adaptive potential. Pronounced variation in genome size (341-54 878 Mb), and especially in GC content (23.9-50.5%), was detected among orchids. Diversity in both genomic traits was closely related to the type of endoreplication, plant growth form and climatic conditions. GC content was also associated with the type of dormancy. In all tested scenarios, OU models always outperformed BM models. Unparalleled GC content variation was discovered in orchids, setting new limits for plants. Our study indicates that diversity in both genome size and GC content has adaptive consequences and is tightly linked with evolutionary transitions to PE.
Asunto(s)
Endorreduplicación , Tamaño del Genoma , Genoma de Planta , Orchidaceae/genética , Adaptación Biológica , Composición de Base , Evolución Biológica , Clima , Modelos Genéticos , FilogeniaRESUMEN
The family of orchids involves a number of critically endangered species. Understanding of drivers of their landscape distribution could provide a valuable insight into their decline. Our objectives were to develop models predicting distribution of selected orchid species-four co-occurring forest orchid species, Cephalanthera rubra, Epipactis atrorubens, E. helleborine, and Neottia nidus-avis-at a landscape scale using a wide range of habitat characteristics. Subsequently, we compared the model predictions with species occurrence and the results of the field germination experiment while considering two germination stages-asymbiotic (early stage) and symbiotic. And finally, we attempted to identify possible drivers of species' landscape distribution (i.e., dispersal, availability of habitat patches, or fungal associates). We have discovered that different habitat characteristics determined the distribution of different orchids. The species also differed in terms of availability of suitable habitat patches and patch occupancy (the highest being E. atrorubens with 80%). Landscape distribution of the species was primarily restricted by the availability of fungal associates (the most important factor for C. rubra) and by the availability of suitable habitat patches (the most important in case of N. nidus-avis). Despite expected easy dispersal of spores, orchid distribution seems to be limited by the availability of fungal associates in the landscape. In contrast, the availability of orchid seeds does not seem to limit their distribution. These results can provide useful guidelines for conservation of the studied species.
Asunto(s)
Micorrizas , Orchidaceae , Animales , Ecosistema , Bosques , Germinación , SimbiosisRESUMEN
Vegetative dormancy, that is the temporary absence of aboveground growth for ≥ 1 year, is paradoxical, because plants cannot photosynthesise or flower during dormant periods. We test ecological and evolutionary hypotheses for its widespread persistence. We show that dormancy has evolved numerous times. Most species displaying dormancy exhibit life-history costs of sprouting, and of dormancy. Short-lived and mycoheterotrophic species have higher proportions of dormant plants than long-lived species and species with other nutritional modes. Foliage loss is associated with higher future dormancy levels, suggesting that carbon limitation promotes dormancy. Maximum dormancy duration is shorter under higher precipitation and at higher latitudes, the latter suggesting an important role for competition or herbivory. Study length affects estimates of some demographic parameters. Our results identify life historical and environmental drivers of dormancy. We also highlight the evolutionary importance of the little understood costs of sprouting and growth, latitudinal stress gradients and mixed nutritional modes.
Asunto(s)
Evolución Biológica , Herbivoria , Demografía , FloresRESUMEN
Nuclear genome size is an inherited quantitative trait of eukaryotic organisms with both practical and biological consequences. A detailed analysis of major families is a promising approach to fully understand the biological meaning of the extensive variation in genome size in plants. Although Orchidaceae accounts for â¼10% of the angiosperm diversity, the knowledge of patterns and dynamics of their genome size is limited, in part due to difficulties in flow cytometric analyses. Cells in various somatic tissues of orchids undergo extensive endoreplication, either whole-genome or partial, and the G1-phase nuclei with 2C DNA amounts may be lacking, resulting in overestimated genome size values. Interpretation of DNA content histograms is particularly challenging in species with progressively partial endoreplication, in which the ratios between the positions of two neighboring DNA peaks are lower than two. In order to assess distributions of nuclear DNA amounts and identify tissue suitable for reliable estimation of nuclear DNA content, we analyzed six different tissue types in 48 orchid species belonging to all recognized subfamilies. Although traditionally used leaves may provide incorrect C-values, particularly in species with progressively partial endoreplication, young ovaries and pollinaria consistently yield 2C and 1C peaks of their G1-phase nuclei, respectively, and are, therefore, the most suitable parts for genome size studies in orchids. We also provide new DNA C-values for 22 orchid genera and 42 species. Adhering to the proposed methodology would allow for reliable genome size estimates in this largest plant family. Although our research was limited to orchids, the need to find a suitable tissue with dominant 2C peak of G1-phase nuclei applies to all endopolyploid species.
Asunto(s)
Citometría de Flujo , Genoma de Planta , Orchidaceae/genética , Núcleo Celular/genética , ADN de Plantas/genética , Endorreduplicación/genética , Tamaño del Genoma , Hojas de la Planta/genéticaRESUMEN
Plant dependence on fungal carbon (mycoheterotrophy) evolved repeatedly. In orchids, it is connected with a mycorrhizal shift from rhizoctonia to ectomycorrhizal fungi and a high natural (13)C and (15)N abundance. Some green relatives of mycoheterotrophic species show identical trends, but most of these remain unstudied, blurring our understanding of evolution to mycoheterotrophy. We analysed mycorrhizal associations and (13)C and (15)N biomass content in two green species, Neottia ovata and N. cordata (tribe Neottieae), from a genus comprising green and nongreen (mycoheterotrophic) species. Our study covered 41 European sites, including different meadow and forest habitats and orchid developmental stages. Fungal ITS barcoding and electron microscopy showed that both Neottia species associated mainly with nonectomycorrhizal Sebacinales Clade B, a group of rhizoctonia symbionts of green orchids, regardless of the habitat or growth stage. Few additional rhizoctonias from Ceratobasidiaceae and Tulasnellaceae, and ectomycorrhizal fungi were detected. Isotope abundances did not detect carbon gain from the ectomycorrhizal fungi, suggesting a usual nutrition of rhizoctonia-associated green orchids. Considering associations of related partially or fully mycoheterotrophic species such as Neottia camtschatea or N. nidus-avis with ectomycorrhizal Sebacinales Clade A, we propose that the genus Neottia displays a mycorrhizal preference for Sebacinales and that the association with nonectomycorrhizal Sebacinales Clade B is likely ancestral. Such a change in preference for mycorrhizal associates differing in ecology within the same fungal taxon is rare among orchids. Moreover, the existence of rhizoctonia-associated Neottia spp. challenges the shift to ectomycorrhizal fungi as an ancestral pre-adaptation to mycoheterotrophy in the whole Neottieae.
Asunto(s)
Basidiomycota/clasificación , Micorrizas/clasificación , Orchidaceae/genética , Orchidaceae/microbiología , Isótopos de Carbono/análisis , Código de Barras del ADN Taxonómico , Ecosistema , Europa (Continente) , Datos de Secuencia Molecular , Isótopos de Nitrógeno/análisis , Filogenia , SimbiosisRESUMEN
BACKGROUND: Seedling recruitment is essential to the sustainability of any plant population. Due to the minute nature of seeds and early-stage seedlings, orchid germination in situ was for a long time practically impossible to observe, creating an obstacle towards understanding seedling site requirements and fluctuations in orchid populations. The introduction of seed packet techniques for sowing and retrieval in natural sites has brought with it important insights, but many aspects of orchid seed and germination biology remain largely unexplored. KEY CONSIDERATIONS: The germination niche for orchids is extremely complex, because it is defined by requirements not only for seed lodging and germination, but also for presence of a fungal host and its substrate. A mycobiont that the seedling can parasitize is considered an essential element, and a great diversity of Basidiomycota and Ascomycota have now been identified for their role in orchid seed germination, with fungi identifiable as imperfect Rhizoctonia species predominating. Specificity patterns vary from orchid species employing a single fungal lineage to species associating individually with a limited selection of distantly related fungi. A suitable organic carbon source for the mycobiont constitutes another key requirement. Orchid germination also relies on factors that generally influence the success of plant seeds, both abiotic, such as light/shade, moisture, substrate chemistry and texture, and biotic, such as competitors and antagonists. Complexity is furthermore increased when these factors influence seeds/seedling, fungi and fungal substrate differentially. CONCLUSIONS: A better understanding of germination and seedling establishment is needed for conservation of orchid populations. Due to the obligate association with a mycobiont, the germination niches in orchid species are extremely complex and varied. Microsites suitable for germination can be small and transient, and direct observation is difficult. An experimental approach using several levels of environmental manipulation/control is recommended.
Asunto(s)
Conservación de los Recursos Naturales , Germinación , Orchidaceae/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Orchidaceae/microbiología , Plantones/microbiologíaRESUMEN
For germination and establishment, orchids depend on carbon (C) and nutrients supplied by mycorrhizal fungi. As adults, the majority of orchids then appear to become autotrophic. To compare the proportional C and nitrogen (N) gain from fungi in mycoheterotrophic seedlings and in adults, here we examined in the field C and N stable isotope compositions in seedlings and adults of orchids associated with ectomycorrhizal and saprotrophic fungi. Using a new highly sensitive approach, we measured the isotope compositions of seedlings and adults of four orchid species belonging to different functional groups: fully and partially mycoheterotrophic orchids associated with narrow or broad sets of ectomycorrhizal fungi, and two adult putatively autotrophic orchids associated exclusively with saprotrophic fungi. Seedlings of orchids associated with ectomycorrhizal fungi were enriched in (13) C and (15) N similarly to fully mycoheterotrophic adults. Seedlings of saprotroph-associated orchids were also enriched in (13) C and (15) N, but unexpectedly their enrichment was significantly lower, making them hardly distinguishable from their respective adult stages and neighbouring autotrophic plants. We conclude that partial mycoheterotrophy among saprotroph-associated orchids cannot be identified unequivocally based on C and N isotope compositions alone. Thus, partial mycoheterotrophy may be much more widely distributed among orchids than hitherto assumed.
Asunto(s)
Carbono/metabolismo , Hongos/metabolismo , Micorrizas/metabolismo , Nitrógeno/metabolismo , Orchidaceae/metabolismo , Plantones/metabolismo , Simbiosis , Isótopos de Carbono/metabolismo , Isótopos de Nitrógeno/metabolismo , Orchidaceae/crecimiento & desarrollo , Orchidaceae/microbiología , Plantones/crecimiento & desarrollo , Plantones/microbiologíaRESUMEN
Many orchid species are endangered due to anthropogenic pressures such as habitat destruction and overharvesting, meanwhile, all orchids rely on orchid mycorrhizal fungi (OMF) for seed germination and seedling growth. Therefore, a better understanding of this intimate association is crucial for orchid conservation. Isolation and identification of OMF remain challenging as many fungi are unculturable. In our study, we tested the efficiency of both culture-dependent and culture-independent methods to describe OMF diversity in multiple temperate orchids and assessed any phylogenetic patterns in cultivability. The culture-dependent method involved the cultivation and identification of single pelotons (intracellular hyphal coils), while the culture-independent method used next-generation sequencing (NGS) to identify root-associated fungal communities. We found that most orchid species were associated with multiple fungi, and the orchid host had a greater impact than locality on the variability in fungal communities. The culture-independent method revealed greater fungal diversity than the culture-dependent one, but despite the lower detection, the isolated fungal strains were the most abundant OMF in adult roots. Additionally, the abundance of NGS reads of cultured OTUs was correlated with the extent of mycorrhizal root colonization in orchid plants. Finally, this limited-scale study tentatively suggests that the cultivability character of OMF may be randomly distributed along the phylogenetic trees of the rhizoctonian families.
RESUMEN
Polyploidy is widely recognized as a major mechanism of sympatric speciation in plants, yet little is known about its effects on interactions with other organisms. Mycorrhizal fungi are among the most common plant symbionts and play an important role in plant nutrient supply. It remains to be understood whether mycorrhizal associations of ploidy-variable plants can be ploidy-specific. We examined mycorrhizal associations in three cytotypes (2x, 3x, 4x) of the Gymnadenia conopsea group (Orchidaceae), involving G. conopsea s.s. and G. densiflora, at different spatial scales and during different ontogenetic stages. We analysed: adults from mixed- and single-ploidy populations at a regional scale; closely spaced adults within a mixed-ploidy site; and mycorrhizal seedlings. All Gymnadenia cytotypes associated mainly with saprotrophic Tulasnellaceae (Basidiomycota). Nonetheless, both adults and seedlings of diploids and their autotetraploid derivatives significantly differed in the identity of their mycorrhizal symbionts. Interploidy segregation of mycorrhizal symbionts was most pronounced within a site with closely spaced adults. This study provides the first evidence that polyploidization of a plant species can be associated with a shift in mycorrhizal symbionts. This divergence may contribute to niche partitioning and facilitate establishment and co-existence of different cytotypes.
Asunto(s)
Biodiversidad , Micorrizas/fisiología , Orchidaceae/microbiología , Ploidias , Simbiosis/fisiología , República Checa , Orchidaceae/crecimiento & desarrollo , Plantones/microbiologíaRESUMEN
Orchid mycorrhizal fungi (OMF) from the rhizoctonia aggregate are generally considered to be soil saprotrophs, but their ability to utilize various nutrient sources has been studied in a limited number of isolates cultivated predominantly in liquid media, although rhizoctonia typically grow on the surface of solid substrates. Nine isolates representing the key OMF families (Ceratobasidiaceae, Tulasnellaceae and Serendipitaceae), sampled in Southern France and the Czech Republic, were tested for their ability to utilize carbon (C), nitrogen (N) and phosphorus (P) sources in vitro in both liquid and solid media. The isolates showed significant inter- and intra-familiar variability in nutrient utilization, most notably in N sources. Isolates produced generally larger amounts of dry biomass on solid medium than in liquid one, but some isolates showed no or limited biomass production on solid medium with particular nutrient sources. The largest amount of biomass was produced by isolates from the family Ceratobasidiaceae on most sources in both medium types. The biomass production of Tulasnellaceae isolates was affected by their phylogenetic relatedness on all sources and medium types. The ability of isolates to utilize particular nutrients in a liquid medium but not a solid one should be considered when optimizing solid media for symbiotic orchid seed germination and in understanding of OMF functional traits under in situ conditions.
RESUMEN
BACKGROUND AND AIMS: Patterns of ploidy variation among and within populations can provide valuable insights into the evolutionary mechanisms shaping the dynamics of plant systems showing ploidy diversity. Whereas data on majority ploidies are, by definition, often sufficiently extensive, much less is known about the incidence and evolutionary role of minority cytotypes. METHODS: Ploidy and proportions of endoreplicated genome were determined using DAPI (4',6-diamidino-2-phenylindole) flow cytometry in 6150 Gymnadenia plants (fragrant orchids) collected from 141 populations in 17 European countries. All widely recognized European species, and several taxa of less certain taxonomic status were sampled within Gymnadenia conopsea sensu lato. KEY RESULTS: Most Gymnadenia populations were taxonomically and/or ploidy heterogeneous. Two majority (2x and 4x) and three minority (3x, 5x and 6x) cytotypes were identified. Evolution largely proceeded at the diploid level, whereas tetraploids were much more geographically and taxonomically restricted. Although minority ploidies constituted <2 % of the individuals sampled, they were found in 35 % of populations across the entire area investigated. The amount of nuclear DNA, together with the level of progressively partial endoreplication, separated all Gymnadenia species currently widely recognized in Europe. CONCLUSIONS: Despite their low frequency, minority cytotypes substantially increase intraspecific and intrapopulation ploidy diversity estimates for fragrant orchids. The cytogenetic structure of Gymnadenia populations is remarkably dynamic and shaped by multiple evolutionary mechanisms, including both the ongoing production of unreduced gametes and heteroploid hybridization. Overall, it is likely that the level of ploidy heterogeneity experienced by most plant species/populations is currently underestimated; intensive sampling is necessary to obtain a holistic picture.
Asunto(s)
Evolución Biológica , Variación Genética , Genoma de Planta/genética , Orchidaceae/genética , Poliploidía , Cromosomas de las Plantas/genética , Citogenética , Endorreduplicación , Europa (Continente) , Citometría de Flujo , Geografía , Hibridación Genética , Orchidaceae/clasificación , Orchidaceae/citologíaRESUMEN
PREMISE OF THE STUDY: Both abiotic and biotic factors shape species distributions. Orchids produce minute seeds with few nutrient reserves, thus requiring mycorrhizal fungi for germination. Therefore, both environmental conditions and mycorrhizal fungi distribution affect their germination success, but these ecological requirements and their congruence with habitat preferences of adults remain poorly understood. We investigated the importance of these factors during germination in four forest orchid species of the genus Epipactis. METHODS: We sowed seeds of three habitat specialists and one generalist in different forest types at sites harboring adults of at least one of these ecologically diverging species. We analyzed germination pattern and identified mycorrhizal fungi of both seedlings and adults. KEY RESULTS: Habitat conditions had little influence on germination pattern as seedlings grew in more habitats than expected from the adults' ecology. Ectomycorrhizal fungi availability did not limit germination. Suitable mycorrhizal fungi, mostly pezizalean ascomycetes, were recruited in various forest types, though the fungal communities differed according to habitat type. Finally, orchids with divergent ecological preferences shared similar mycorrhizal fungi. CONCLUSIONS: Limited adult distribution contrasted with successful seed germination at diverse sites and indicates existence of niche differentiation between adults and seedlings. Ecological specialization may thus be determined by factors other than mycorrhizal fungi that act later in the ontogeny, perhaps during the transition to above-ground development.
Asunto(s)
Ecosistema , Germinación , Orchidaceae/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Simbiosis , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/fisiología , República Checa , ADN de Hongos/química , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Variación Genética , Geografía , Interacciones Huésped-Patógeno , Datos de Secuencia Molecular , Micorrizas/clasificación , Micorrizas/genética , Micorrizas/fisiología , Orchidaceae/clasificación , Orchidaceae/microbiología , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , ARN Ribosómico 5.8S/genética , Plantones/crecimiento & desarrollo , Plantones/microbiología , Semillas/microbiología , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
Terrestrial orchids can form tubers, organs modified to store energy reserves. Tubers are an attractive source of nutrients, and salep, a flour made from dried orchid tubers, is the source of traditional beverages. Tubers also contain valuable secondary metabolites and are used in traditional medicine. The extensive harvest of wild orchids is endangering their populations in nature; however, orchids can be cultivated and tubers mass-produced. This work illustrates the importance of plant-fungus interaction in shaping the content of orchid tubers in vitro. Orchid plants of Dactylorhiza sp. grown in asymbiotic culture were inoculated with a fungal isolate from Tulasnella calospora group and, after 3 months of co-cultivation, tubers were analyzed. The fungus adopted the saprotrophic mode of life, but no visible differences in the morphology and biomass of the tubers were detected compared to the mock-treated plants. To elucidate the mechanisms protecting the tubers against fungal infestation, proteome, metabolome, and lipidome of tubers were analyzed. In total, 1,526, 174, and 108 proteins, metabolites, and lipids were quantified, respectively, providing a detailed snapshot of the molecular process underlying plant-microbe interaction. The observed changes at the molecular level showed that the tubers of inoculated plants accumulated significantly higher amounts of antifungal compounds, including phenolics, alkaloid Calystegine B2, and dihydrophenanthrenes. The promoted antimicrobial effects were validated by observing transient inhibition of Phytophthora cactorum growth. The integration of omics data highlighted the promotion of flavonoid biosynthesis, the increase in the formation of lipid droplets and associated production of oxylipins, and the accumulation of auxin in response to T. calospora. Taken together, these results provide the first insights into the molecular mechanisms of defense priming in orchid tubers and highlight the possible use of fungal interactors in biotechnology for the production of orchid secondary metabolites.
RESUMEN
BACKGROUND AND AIMS: One of the prerequisites for polyploid research in natural systems is knowledge of the geographical distribution of cytotypes. Here inter- and intrapopulational ploidy diversity was examined in the Gymnadenia conopsea aggregate in central Europe and potential explanations and evolutionary consequences of the observed spatial patterns investigated. METHODS: DAPI flow cytometry supplemented by confirmatory chromosome counts was used to determine ploidy in 3581 samples of the G. conopsea aggregate from 43 populations. The fine-scale spatial pattern of cytotype distribution (intra- and interploidy associations) was analysed with univariate and bivariate K-functions. KEY RESULTS: Gymnadenia tissues undergo a progressively partial endoreplication, which accounts for about 60 % and 75 % of the total genome in G. conopsea and G. densiflora, respectively. Flow cytometric profiles are therefore species-specific and can be used as a marker for rapid and reliable species recognition. Two majority (4x, 8x) and three minority (6x, 10x, 12x) cytotypes were found, often in mixed-ploidy populations (harbouring up to all five different ploidy levels). The scarcity of the minority cytotypes (about 2·7 %) suggests the existence of strong pre- or postzygotic mating barriers. Spatial structure was observed in plots of populations with the highest cytotype variation, including clumping of individuals of the same ploidy and negative association between tetra- and octoploids. CONCLUSIONS: The remarkable ploidy coexistence in the G. conopsea aggregate has reshaped our perception of intrapopulational ploidy diversity under natural conditions. This system offers unique opportunities for studying processes governing the formation and establishment of polyploids and assessing the evolutionary significance of the various pre- and postzygotic mating barriers that maintain this ploidy mixture.
Asunto(s)
ADN de Plantas/genética , Variación Genética , Orchidaceae/genética , Cromosomas de las Plantas , República Checa , Citometría de Flujo , Genoma de Planta , Orchidaceae/clasificación , Poliploidía , Eslovaquia , TetraploidíaRESUMEN
The deficiency of pollen grains for ovule fertilization can be the main factor limiting plant reproduction and fitness. Because of the ongoing global changes, such as biodiversity loss and landscape fragmentation, a better knowledge of the prevalence and predictability of pollen limitation is challenging within current ecological research. In our study we used pollen supplementation to evaluate pollen limitation (at the level of seed number and weight) in 22 plant species growing in a wet semi-natural meadow. We investigated the correlation between the pollen limitation index (PL) and floral traits associated with plant reproduction or pollinator foraging behavior. We recorded significant pollen limitation for approximately 41% of species (9 out of 22 surveyed). Seven species had a significant positive response in seed production and two species increased in seed weight after pollen supplementation. Considering traits, PL significantly decreased with the number of pollinator functional groups. The relationship of PL with other examined traits was not supported by our results. The causes of pollen limitation may vary among species with regard to (1) different reproductive strategies and life history, and/or (2) temporary changes in influence of biotic and abiotic factors at a site.