Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Divers ; 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38871969

RESUMEN

Histone deacetylases constitute a group of enzymes that participate in several biological processes. Notably, inhibiting HDAC8 has become a therapeutic strategy for various diseases. The current inhibitors for HDAC8 lack selectivity and target multiple HDACs. Consequently, there is a growing recognition of the need for selective HDAC8 inhibitors to enhance the effectiveness of therapeutic interventions. In our current study, we have utilized a multi-faceted approach, including Quantitative Structure-Activity Relationship (QSAR) combined with Quantitative Read-Across Structure-Activity Relationship (q-RASAR) modeling, pharmacophore mapping, molecular docking, and molecular dynamics (MD) simulations. The developed q-RASAR model has a high statistical significance and predictive ability (Q2F1:0.778, Q2F2:0.775). The contributions of important descriptors are discussed in detail to gain insight into the crucial structural features in HDAC8 inhibition. The best pharmacophore hypothesis exhibits a high regression coefficient (0.969) and a low root mean square deviation (0.944), highlighting the importance of correctly orienting hydrogen bond acceptor (HBA), ring aromatic (RA), and zinc-binding group (ZBG) features in designing potent HDAC8 inhibitors. To confirm the results of q-RASAR and pharmacophore mapping, molecular docking analysis of the five potent compounds (44, 54, 82, 102, and 118) was performed to gain further insights into these structural features crucial for interaction with the HDAC8 enzyme. Lastly, MD simulation studies of the most active compound (54, mapped correctly with the pharmacophore hypothesis) and the least active compound (34, mapped poorly with the pharmacophore hypothesis) were carried out to validate the observations of the studies above. This study not only refines our understanding of essential structural features for HDAC8 inhibition but also provides a robust framework for the rational design of novel selective HDAC8 inhibitors which may offer insights to medicinal chemists and researchers engaged in the development of HDAC8-targeted therapeutics.

2.
Mol Divers ; 2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37369957

RESUMEN

Bile acids are amphiphilic substances produced naturally in humans. In the context of drug delivery and dosage form design, it is critical to understand whether a drug interacts with bile inside the gastrointestinal (GI) tract or not. This study focuses on the identification of structural fingerprints/features important for bile interaction. Molecular modelling methods such as Bayesian classification and recursive partitioning (RP) studies are executed to find important fingerprints/features for the bile interaction. For the Bayesian classification study, the ROC score of 0.837 and 0.950 are found for the training set and the test set compounds, respectively. The fluorine-containing aliphatic/aromatic group, the branched chain of the alkyl group containing hydroxyl moiety and the phenothiazine ring etc. are identified as good fingerprints having a positive contribution towards bile interactions, whereas, the bad fingerprints such as free carboxylate group, purine, and pyrimidine ring etc. have a negative contribution towards bile interactions. The best tree (tree ID: 1) from the RP study classifies the bile interacting or non-interacting compounds with a ROC score of 0.941 for the training and 0.875 for the test set. Additionally, SARpy and QSAR-Co analyses are also been performed to classify compounds as bile interacting/non-interacting. Moreover, forty-six recently FDA-approved drugs have been screened by the developed SARpy and QSAR-Co models to assess their bile interaction properties. Overall, this attempt may facilitate the researchers to identify bile interacting/non-interacting molecules in a faster way and help in the design of formulations and target-specific drug development.

3.
J Mol Struct ; 1275: 134642, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36467615

RESUMEN

COVID-19 is the most devastating disease in recent times affecting most people globally. The higher rate of transmissibility and mutations of SARS-CoV-2 along with the lack of potential therapeutics has made it a global crisis. Potential molecules from natural sources could be a fruitful remedy to combat COVID-19. This systematic review highlights the detailed therapeutic implication of naturally occurring glycyrrhizin and its related derivatives against COVID-19. Glycyrrhizin has already been established for blocking different biomolecular targets related to the SARS-CoV-2 replication cycle. In this article, several experimental and theoretical evidences of glycyrrhizin and related derivatives have been discussed in detail to evaluate their potential as a promising therapeutic strategy against COVID-19. Moreover, the implication of glycyrrhizin in traditional Chinese medicines for alleviating the symptoms of COVID-19 has been reviewed. The potential role of glycyrrhizin and related compounds in affecting various stages of the SARS-CoV-2 life cycle has also been discussed in detail. Derivatization of glycyrrhizin for designing potential lead compounds along with combination therapy with other anti-SARS-CoV-2 agents followed by extensive evaluation may assist in the formulation of novel anti-coronaviral therapy for better treatment to combat COVID-19.

4.
Bioorg Med Chem ; 53: 116534, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864496

RESUMEN

Kinases are considered as important signalling enzymes that illustrate 20% of the druggable genome. Human kinase family comprises >500 protein kinases and about 20 lipid kinases. Protein kinases are responsible for the mechanism of protein phosphorylation. These are necessary for regulation of various cellular activities including proliferation, cell cycle, apoptosis, motility, growth, differentiation, etc. Their deregulation leads to disruption of many cellular processes leading to different diseases most importantly cancer. Thus, kinases are considered as valuable targets in different types of cancer as well as other diseases. Researchers around the world are actively engaged in developing inhibitors based on distinct chemical scaffolds. Indole represents as a versatile scaffold in the naturally occurring and bioactive molecules. It is also used as a privileged scaffold for the target-based drug design against different diseases. This present article aim to review the applications of indole scaffold in the design of inhibitors against different tyrosine kinases such as epidermal growth factor receptors (EGFRs), vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptors (PDGFRs), etc. Important structure activity relationships (SARs) of indole derivatives were discussed. The present work is an attempt to summarize all the crucial structural information which is essential for the development of indole based tyrosine kinase inhibitors with improved potency.


Asunto(s)
Diseño de Fármacos , Indoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Indoles/síntesis química , Indoles/química , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Proteínas Tirosina Quinasas/metabolismo , Relación Estructura-Actividad
5.
Bioorg Med Chem ; 74: 117044, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36244233

RESUMEN

The protease enzyme, matrix metalloproteinase-2 (MMP-2) has been a target of choice for the drug development due to its multi-façade involvement in numerous diseased conditions including cancer. To find a selective MMP-2 inhibitor several computational strategies are employed in its design and discovery. In these strategies, protein structure of MMP-2 is an inevitable part to formulate effective structure-based drug design (SBDD) of selective MMP-2 inhibitors. In the present communication, several crystal structures of MMP-2 have been analyzed with different statistical parameters and their implementations in SBDD of inhibitors are scrutinized. In addition, binding mode analyses of various classes of inhibitors are discussed to pinpoint the effective design of selective inhibitors by maximizing its interaction with the MMP-2 enzyme binding site. This may provide a crucial insight for exploring the numerous possibilities for SBDD of MMP-2 inhibitors to accelerate anticancer drug discovery efforts.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Simulación de Dinámica Molecular , Metaloproteinasa 2 de la Matriz/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de la Metaloproteinasa de la Matriz/química , Diseño de Fármacos , Sitios de Unión
6.
Mol Divers ; 26(5): 2549-2559, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34978011

RESUMEN

Urea transporter is a membrane transport protein. It is involved in the transferring of urea across the cell membrane in humans. Along with urea transporter A, urea transporter B (UT-B) is also responsible for the management of urea concentration and blood pressure of human. The inhibitors of urea transporters have already generated a huge attention to be developed as alternate safe class of diuretic. Unlike conventional diuretics, these inhibitors are suitable for long-term therapy without hampering the precious electrolyte imbalance in the human body. In this study, UT-B inhibitors were analysed by using multi-chemometric modelling approaches. The possible pharmacophore features along with favourable and unfavourable sub-structural fingerprints for UT-B inhibition are extracted. This information will guide the medicinal chemist to design potent UT-B inhibitors in future.


Asunto(s)
Diuréticos , Proteínas de Transporte de Membrana , Diuréticos/química , Diuréticos/farmacología , Electrólitos/metabolismo , Humanos , Urea/farmacología , Transportadores de Urea
7.
Mol Divers ; 26(1): 215-228, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33675510

RESUMEN

Novel coronavirus disease 2019 (COVID-19) emerges as a serious threat to public health globally. The rapid spreading of COVID-19, caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), proclaimed the multitude of applied research needed not only to save the human health but also for the environmental safety. As per the recent World Health Organization reports, the novel corona virus may never be wiped out completely from the world. In this connection, the inhibitors already designed against different targets of previous human coronavirus (HCoV) infections will be a great starting point for further optimization. Pinpointing biochemical events censorious to the HCoV lifecycle has provided two proteases: a papain-like protease (PLpro) and a 3C-like protease (3CLpro) enzyme essential for viral replication. In this study, naphthyl derivatives inhibiting PLpro enzyme were subjected to robust molecular modelling approaches to understand different structural fingerprints important for the inhibition. Here, we cover two main aspects such as (a) exploration of naphthyl derivatives by classification QSAR analyses to find important fingerprints that module the SARS-CoV PLpro inhibition and (b) implications of naphthyl derivatives against SARS-CoV-2 PLpro enzyme through detailed ligand-receptor interaction analysis. The modelling insights will help in the speedy design of potent broad spectrum PLpro inhibitors against infectious SARS-CoV and SARS-CoV-2 in the future.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Antivirales/química , Antivirales/farmacología , Descubrimiento de Drogas , Humanos , Papaína , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2
8.
Exp Parasitol ; 241: 108365, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36007587

RESUMEN

Current drugs are inefficient for the treatment of visceral leishmaniasis an immunosuppressive ailment caused by Leishmania donovani. Regrettably, there is no plant-origin antileishmanial drug present. P2X7R is constitutively present on macrophage surfaces and can be a putative therapeutic target in intra-macrophage pathogens with function attributes towards inflammation, host cell apoptosis, altered redox, and phagolysosomal maturation by activating p38MAPK. Here we demonstrated that the initial interaction of Spergulin-A (Sp A), a triterpenoid saponin with RAW 264.7 macrophages was mediated through P2X7R involving the signaling cascade intermediates Ca++, p38MAPK, and NF-κß. Phospho (P)-p38MAPK involvement is shown to have specific and firm importance in leishmanial killing with increased NF-κßp65. Phago-lysosomal maturation by Sp A also campaigns for another contribution of P2X7R. In vivo evaluation of the anti-leishmanial activity of Sp A was monitored through expression analyses of P2X7R, P-p38MAPK, and NF-κßp65 in murine spleen and bone-marrow macrophages and supported Sp A being a natural compound of leishmanicidal functions which acted through the P2X7R-p38MAPK axis.


Asunto(s)
Proteínas Portadoras/metabolismo , Leishmania donovani , Leishmaniasis Visceral , Animales , Leishmania donovani/metabolismo , Leishmaniasis Visceral/tratamiento farmacológico , Macrófagos/metabolismo , Ratones , Ratones Endogámicos BALB C , Receptores Purinérgicos P2X7/metabolismo , Transducción de Señal , Bazo/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
J Mol Struct ; 1251: 132041, 2022 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-34866654

RESUMEN

Due to COVID-19, the whole world is undergoing a devastating situation, but treatment with no such drug candidates still has been established exclusively. In that context, 69 diverse chemicals with potential SARS-CoV-2 3CLpro inhibitory property were taken into consideration for building different internally and externally validated linear (SW-MLR and GA-MLR), non-linear (ANN and SVM) QSAR, and HQSAR models to identify important structural and physicochemical characters required for SARS-CoV-2 3CLpro inhibition. Importantly, 2-oxopyrrolidinyl methyl and benzylester functions, and methylene (hydroxy) sulphonic acid warhead group, were crucial for retaining higher SARS-CoV-2 3CLpro inhibition. These GA-MLR and HQSAR models were also applied to predict some already repurposed drugs. As per the GA-MLR model, curcumin, ribavirin, saquinavir, sepimostat, and remdesivir were found to be the potent ones, whereas according to the HQSAR model, lurasidone, saquinavir, lopinavir, elbasvir, and paritaprevir were the highly effective SARS-CoV-2 3CLpro inhibitors. The binding modes of those repurposed drugs were also justified by the molecular docking, molecular dynamics (MD) simulation, and binding energy calculations conducted by several groups of researchers. This current work, therefore, may be able to find out important structural parameters to accelerate the COVID-19 drug discovery processes in the future.

10.
Pharmacol Res ; 163: 105274, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33171304

RESUMEN

HDAC6, a class IIB HDAC isoenzyme, stands unique in its structural and physiological functions. Besides histone modification, largely due to its cytoplasmic localization, HDAC6 also targets several non-histone proteins including Hsp90, α-tubulin, cortactin, HSF1, etc. Thus, it is one of the key regulators of different physiological and pathological disease conditions. HDAC6 is involved in different signaling pathways associated with several neurological disorders, various cancers at early and advanced stage, rare diseases and immunological conditions. Therefore, targeting HDAC6 has been found to be effective for various therapeutic purposes in recent years. Though several HDAC6 inhibitors (HDAC6is) have been developed till date, only two ACY-1215 (ricolinostat) and ACY-241 (citarinostat) are in the clinical trials. A lot of work is still needed to pinpoint strictly selective as well as potent HDAC6i. Considering the recent crystal structure of HDAC6, novel HDAC6is of significant therapeutic value can be designed. Notably, the canonical pharmacophore features of HDAC6is consist of a zinc binding group (ZBG), a linker function and a cap group. Significant modifications of cap function may lead to achieve better selectivity of the inhibitors. This review details the study about the structural biology of HDAC6, the physiological and pathological role of HDAC6 in several disease states and the detailed structure-activity relationships (SARs) of the known HDAC6is. This detailed review will provide key insights to design novel and highly effective HDAC6i in the future.


Asunto(s)
Descubrimiento de Drogas , Histona Desacetilasa 6/metabolismo , Animales , Histona Desacetilasa 6/química , Humanos , Neoplasias/metabolismo , Enfermedades Neurodegenerativas/metabolismo
11.
Bioorg Med Chem ; 29: 115860, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33191083

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) brutally perils physical and mental health worldwide. Unavailability of effective anti-viral drug rendering global threat of COVID-19 caused by SARS-CoV-2. In this scenario, viral protease enzymes are crucial targets for drug discovery. This extensive study meticulously focused on two viral proteases such as main protease (Mpro) and papain-like protease (PLpro), those are essential for viral replication. This review provides a detail overview of the targets (Mpro and PLpro) from a structural and medicinal chemistry point of view, together with recently reported protease inhibitors. An insight into the challenges in the development of effective as well as drug like protease inhibitors is discussed. Peptidomimetic and/or covalent coronavirus protease inhibitors possessed potent and selective active site inhibition but compromised in pharmacokinetic parameters to be a drug/drug like molecule. Lead optimization of non-peptidomimetic and/or low molecular weight compounds may be a better option for oral delivery. A masterly combination of adequate pharmacokinetic properties with coronavirus protease activity as well as selectivity will provide potential drug candidates in future. This study is a part of our endeavors which surely dictates medicinal chemistry efforts to discover effective anti-viral agent for this devastating disease.


Asunto(s)
Antivirales/metabolismo , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/metabolismo , Descubrimiento de Drogas , Antivirales/química , Dominio Catalítico , Proteasas 3C de Coronavirus/química , Inhibidores de Cisteína Proteinasa/química , Evaluación Preclínica de Medicamentos , Simulación del Acoplamiento Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad Cuantitativa , SARS-CoV-2/enzimología
12.
Bioorg Chem ; 117: 105446, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34717237

RESUMEN

Histone deacetylase 3 (HDAC3) is one of the most promising targets to develop anticancer therapeutics. In continuation of our quest for selective HDAC3 inhibitors, a series of small molecules having o-hydroxy benzamide as the novel zinc binding group (ZBG) has been introduced for the first time that can be able to produce good HDAC3-selectivity over other HDACs. The most promising HDAC3 inhibitors, 11a and 12b, displayed promising in vitro anticancer activities with less toxicity to normal kidney cells. These compounds significantly upregulate histone acetylation and induce apoptosis with a G2/M phase arrest in B16F10 cells. Compound 11a exhibited potent antitumor efficacy in 4T1-Luc breast cancer xenograft mouse model in female Balb/c mice. It also showed significant tumor growth suppression with no general toxicity and extended survival rates post-tumor resection. It significantly induced higher ROS generation, leading to apoptosis. No considerable toxicity was noticed in major organs isolated from the compound 11a-treated mice. Compound 11a also induced the upregulation of acH3K9, acH4K12, caspase-3 and caspase-7 as analyzed by immunoblotting with treated tumor tissue. Overall, HDAC3 selective inhibitor 11a might be a potential lead for the clinical translation as an emerging drug candidate.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Benzamidas/síntesis química , Benzamidas/química , Sitios de Unión/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
13.
Bioorg Chem ; 114: 105050, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34120025

RESUMEN

A series of novel linker-less benzamides with different aryl and heteroaryl cap groups have been designed, synthesized, and screened as potent histone deacetylase (HDAC) inhibitors with promising anticancer activity. Two lead compounds 5e and 5f were found as potent and highly selective HDAC3 inhibitors over other Class-I HDACs and HDAC6. Compound 5e bearing a 6-quinolinyl moiety as the cap group was found to be a highly potent HDAC3 inhibitor (IC50 = 560 nM) and displayed 46-fold selectivity for HDAC3 over HDAC2, and 33-fold selectivity for HDAC3 over HDAC1. The synthesized compounds possess antiproliferative activities against different cancer cell lines and significantly less cytotoxic to normal cells. Molecular Docking studies of compounds 5e and 5f reveal a similar binding mode of interactions as CI994 at the HDAC3 active site. These observations agreed with the in vitro HDAC3 inhibitory activities. Significant enhancement of the endogenous acetylation level on H3K9 and H4K12 was found when B16F10 cells were treated with compounds 5e and 5f in a dose-dependent manner. The compounds induced apoptotic cell death in Annexin-V/FITC-PI assay and caused cell cycle arrest at G2/M phase of cell cycle in B16F10 cells. These compounds may serve as potential HDAC3 inhibitory anticancer therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Benzamidas/farmacología , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Simulación del Acoplamiento Molecular , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Benzamidas/síntesis química , Benzamidas/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Ratones , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
14.
Mol Divers ; 25(3): 1827-1838, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33400085

RESUMEN

Main protease (Mpro) of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) intervenes in the replication and transcription processes of the virus. Hence, it is a lucrative target for anti-viral drug development. In this study, molecular modeling analyses were performed on the structure activity data of recently reported diverse SARS-CoV-2 Mpro inhibitors to understand the structural requirements for higher inhibitory activity. The classification-based quantitative structure-activity relationship (QSAR) models were generated between SARS-CoV-2 Mpro inhibitory activities and different descriptors. Identification of structural fingerprints to increase or decrease in the inhibitory activity was mapped for possible inclusion/exclusion of these fingerprints in the lead optimization process. Challenges in ADME properties of protease inhibitors were also discussed to overcome the problems of oral bioavailability. Further, depending on the modeling results, we have proposed novel as well as potent SARS-CoV-2 Mpro inhibitors.


Asunto(s)
Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/enzimología , Disponibilidad Biológica , Proteasas 3C de Coronavirus/química , Modelos Moleculares , Inhibidores de Proteasas/farmacocinética , Conformación Proteica , SARS-CoV-2/efectos de los fármacos , Relación Estructura-Actividad
15.
J Mol Struct ; 1237: 130366, 2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-33814612

RESUMEN

Fragment based drug discovery (FBDD) by the aid of different modelling techniques have been emerged as a key drug discovery tool in the area of pharmaceutical science and technology. The merits of employing these methods, in place of other conventional molecular modelling techniques, endorsed clear detection of the possible structural fragments present in diverse set of investigated compounds and can create alternate possibilities of lead optimization in drug discovery. In this work, two fragment identification tools namely SARpy and Laplacian-corrected Bayesian analysis were used for previous SARS-CoV PLpro and 3CLpro inhibitors. A robust and predictive SARpy based fragments identification was performed which have been validated further by Laplacian-corrected Bayesian model. These comprehensive approaches have advantages since fragments are straight forward to interpret. Moreover, distinguishing the key molecular features (with respect to ECFP_6 fingerprint) revealed good or bad influences for the SARS-CoV protease inhibitory activities. Furthermore, the identified fragments could be implemented in the medicinal chemistry endeavors of COVID-19 drug discovery.

16.
J Mol Struct ; 1224: 129026, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32834115

RESUMEN

As the world struggles against current global pandemic of novel coronavirus disease (COVID-19), it is challenging to trigger drug discovery efforts to search broad-spectrum antiviral agents. Thus, there is a need of strong and sustainable global collaborative works especially in terms of new and existing data analysis and sharing which will join the dots of knowledge gap. Our present chemical-informatics based data analysis approach is an attempt of application of previous activity data of SARS-CoV main protease (Mpro) inhibitors to accelerate the search of present SARS-CoV-2 Mpro inhibitors. The study design was composed of three major aspects: (1) classification QSAR based data mining of diverse SARS-CoV Mpro inhibitors, (2) identification of favourable and/or unfavourable molecular features/fingerprints/substructures regulating the Mpro inhibitory properties, (3) data mining based prediction to validate recently reported virtual hits from natural origin against SARS-CoV-2 Mpro enzyme. Our Structural and physico-chemical interpretation (SPCI) analysis suggested that heterocyclic nucleus like diazole, furan and pyridine have clear positive contribution while, thiophen, thiazole and pyrimidine may exhibit negative contribution to the SARS-CoV Mpro inhibition. Several Monte Carlo optimization based QSAR models were developed and the best model was used for screening of some natural product hits from recent publications. The resulted active molecules were analysed further from the aspects of fragment analysis. This approach set a stage for fragment exploration and QSAR based screening of active molecules against putative SARS-CoV-2 Mpro enzyme. We believe the future in vitro and in vivo studies would provide more perspectives for anti-SARS-CoV-2 agents.

17.
Photochem Photobiol Sci ; 19(12): 1776-1789, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33320165

RESUMEN

This article compares a reported hydrophobic and photobiologically inert porphyrin synthon, (NPh)TPyP, bearing a single meso-4-nitrophenyl group and three meso-pyridyl groups (A3B type) with a new photobiologically active metal-free porphyrin, P3N, and its zinc-complex, P3NZn, which bear a meso-4-nitrophenyl group along with three distal pyridyl groups. Both P3N and P3NZn experience ruptured π-conjugation with the porphyrin macrocycle and attain hydrophilicity, as indicated via density functional theory (DFT) calculations, becoming photobiologically active under in vitro conditions. The non-invasive photodynamic activity (PDA) predominantly shown by the zinc-complex P3NZn (with higher hydrophilicity) towards KRAS-mutated human lung-cancer cells (A549) was studied. The results indicate the existence of intracellular singlet oxygen inflicted anticancer PDA, which is apparent through the upregulation of intracellular reactive oxygen species (ROS) and the downregulation of both intracellular superoxide dismutase (SOD) and intracellular reduced glutathione (GSH) levels. The trends obtained from both SOD and GSH assays were indicators of therapeutic defence against oxidative stress via neutralizing superoxide anions (SOA).


Asunto(s)
Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/farmacología , Piridinas/química , Zinc/química , Células A549 , Complejos de Coordinación/química , Teoría Funcional de la Densidad , Regulación hacia Abajo , Glutatión/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Fármacos Fotosensibilizantes/química , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo
18.
Nanomedicine ; 30: 102292, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32853785

RESUMEN

Asthma, one of the significant public health problems, is triggered by certain inflammatory processes in the airways that are not addressed propitiously by current therapies. Though pieces of evidence on allergic asthma mitigation by the anti-inflammatory bioflavonoid chrysin (CHR) are accumulating, poor bioavailability, and low solubility curtail drug development. To overcome these shortcomings, CHR loaded nanoparticle (CHR-NP) was formulated, and its salutary effect in preclinical murine allergic asthma model via the peroral route was evaluated. The spherical nanosized particles showed slow, sustained release in vitro. Moreover, CHR-NP dramatically reduced the serum IgE, ovalbumin (OVA)-induced lung histological alteration, as well as Th2 (T-helper 2) cytokines in the bronchoalveolar lavage fluid (BALF). It also suppressed the elevated serum pro-inflammatory cytokines and their upstream TLR/NF-κB/NLRP3 pathway activation in lung superior to CHR and almost identical to dexamethasone (DEX). Thus this study suggests the potentiality of CHR-NP in ameliorating allergic asthma progression.


Asunto(s)
Asma/inducido químicamente , Flavonoides/administración & dosificación , Hipersensibilidad/etiología , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ovalbúmina/administración & dosificación , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/administración & dosificación , Receptores Toll-Like/metabolismo , Células A549 , Animales , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo , Humanos , Inmunoglobulina E/sangre , Mediadores de Inflamación/metabolismo , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión
19.
Pharmacol Res ; 131: 128-142, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29514055

RESUMEN

Histone deacetylase inhibitors (HDACIs) have a paramount importance in the acetylation process of histone and non-histone proteins that are crucial players in the cellular epigenetic modifications. HDACIs exert effective antiproliferation through DNA repairing, cell cycle arrest, apoptosis induction and alteration of genetic expression. HDAC8 is one of the crucial HDACs, affects the epigenetic gene silencing process and cancer progression. Hence, HDAC8 is one of the key cancer targets among class I HDACs that may be effectively blocked as a benchmark therapy to combat malignancy. In the current review, a special emphasis has been given for the non-hydroxamate type of HDAC8 inhibitors. It may provide some fruitful structural information to design newer better active candidates to fight against target specific malignancies in future.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias/tratamiento farmacológico , Proteínas Represoras/antagonistas & inhibidores , Animales , Antineoplásicos/uso terapéutico , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Humanos , Modelos Moleculares , Neoplasias/metabolismo , Proteínas Represoras/metabolismo , Relación Estructura-Actividad
20.
Mol Divers ; 22(1): 129-158, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29147824

RESUMEN

Integrins [Formula: see text] and [Formula: see text] are important targets to treat different inflammatory diseases, such as multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, atherosclerosis, and asthma. Despite being valuable targets, only a few work has been reported to date regarding molecular modeling studies on these integrins. Not only that, none of these reports addressed the selectivity issue between integrins [Formula: see text] and [Formula: see text]. Therefore, a major challenge regarding the design and discovery of selective integrin antagonists remains. In this study, a series of 142 N-benzoyl-L-biphenylalanines having both integrin [Formula: see text] and [Formula: see text] inhibitory activities were considered for a variety of QSAR approaches including regression and classification-based 2D-QSARs, Hologram QSARs, 3D-QSAR CoMFA and CoMSIA studies to identify the structural requirements of these integrin antagonists. All these QSAR models were statistically validated and subsequently correlated with each other to get a detailed understanding of the activity and selectivity profiles of these molecules.


Asunto(s)
Integrinas/química , Modelos Moleculares , Fenilalanina/síntesis química , Fenilalanina/farmacología , Relación Estructura-Actividad Cuantitativa , Algoritmos , Teorema de Bayes , Simulación por Computador , Diseño de Fármacos , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Integrinas/antagonistas & inhibidores , Ligandos , Estructura Molecular , Fenilalanina/análogos & derivados , Unión Proteica , Multimerización de Proteína/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA