Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 18(2): e1010301, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35157734

RESUMEN

Moloney leukemia virus 10 protein (MOV10) is an interferon (IFN)-inducible RNA helicase implicated in antiviral activity against RNA viruses, yet its role in herpesvirus infection has not been investigated. After corneal inoculation of mice with herpes simplex virus 1 (HSV-1), we observed strong upregulation of both MOV10 mRNA and protein in acutely infected mouse trigeminal ganglia. MOV10 suppressed HSV-1 replication in both neuronal and non-neuronal cells, and this suppression required the N-terminus, but not C-terminal helicase domain of MOV10. MOV10 repressed expression of the viral gene ICP0 in transfected cells, but suppressed HSV-1 replication independently of ICP0. MOV10 increased expression of type I IFN in HSV-1 infected cells with little effect on IFN downstream signaling. Treating the cells with IFN-α or an inhibitor of the IFN receptor eliminated MOV10 suppression of HSV-1 replication. MOV10 enhanced IFN production stimulated by cytoplasmic RNA rather than DNA. IKKε co-immunoprecipitated with MOV10 and was required for MOV10 restriction of HSV-1 replication. Mass spectrometry identified ICP27 as a viral protein interacting with MOV10. Co-immunoprecipitation results suggested that this interaction depended on the RGG box of ICP27 and both termini of MOV10. Overexpressed ICP27, but not its RGG-Box deletion mutant, rendered MOV10 unable to regulate HSV-1 replication and type I IFN production. In summary, MOV10 is induced to restrict HSV-1 lytic infection by promoting the type I IFN response through an IKKε-mediated RNA sensing pathway, and its activity is potentially antagonized by ICP27 in an RGG box dependent manner.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Proteínas Inmediatas-Precoces , Interferón Tipo I , Animales , Herpes Simple/genética , Herpesvirus Humano 1/fisiología , Quinasa I-kappa B , Proteínas Inmediatas-Precoces/metabolismo , Ratones , ARN , Replicación Viral
2.
Hepatol Res ; 54(2): 151-161, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37768830

RESUMEN

AIM: To weight the prognostic value of thyroid hormones in catastrophic acute-on-chronic liver failure (ACLF). METHODS: A retrospective cohort (n = 635) and two prospective cohorts (n = 353, and 198) were enrolled in this study. The performance of a novel developed prognostic score was assessed from aspects of reliability, discrimination, and clinical net benefit. RESULTS: Thyroid-stimulating hormone (TSH) was identified to have the most potential as a prognostic predictor for hepatitis B virus-related ACLF among thyroid hormones. The novel score (modified chronic liver failure-organ failure score [mCLIF-OFs]) was developed with weighted TSH and other scored organs in the CLIF-OFs using the retrospective cohort (n = 635). The predicted risk and observed probabilities of death were comparable across the deciles of mCLIF-OFs (Hosmer-Lemeshow χ2  = 4.28, p = 0.83; Brier scaled = 11.9). The C-index of mCLIF-OFs (0.885 [0.883-0.887]) for 30-day mortality was significantly higher than that of the CLIF-OFs, chronic liver failure-sequential organ failure assessment score (CLIF-SOFAs), CLIF-C ACLFs, Model of End-stage Liver Disease (MELD), and Child-Pugh (all p < 0.001). The absolute improvements of prediction error rates of the mCLIF-OFs compared to the above five scores were from 19.0% to 61.1%. After the analysis of probability density function, the mCLIF-OFs showed the least overlapping coefficients (27.9%) among the above prognostic scores. Additionally, the mCLIF-OFs showed greater net benefit than the above five prognostic scores over a wide range of risk threshold of death. Similar results were validated in two prospective ACLF cohorts with HBV and non-HBV etiologies. CONCLUSION: Weighted TSH portended the outcome of ACLF patients, which could be treated as a "damaged organ" of the hypothalamic-pituitary-thyroid axis. The novel mCLIF-OFs is a reliable prognostic score with better discrimination power and clinical net benefit than CLIF-OFs, CLIF-SOFAs, CLIF-C ACLFs, MELD, and Child-Pugh.

3.
Int J Mol Sci ; 23(12)2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35743068

RESUMEN

Walnut (Juglans regia L.) is an important woody nut tree species, and its endopleura (the inner coating of a seed) is rich in many polyphenols. Thus far, the pathways and essential genes involved in polyphenol biosynthesis in developing walnut endopleura remain largely unclear. We compared metabolite differences between endopleura and embryo in mature walnuts, and analyzed the changes of metabolites in endopleura at 35, 63, 91, 119, and 147 days after pollination (DAP). A total of 760 metabolites were detected in the metabolome, and the polyphenol contents in endopleura were higher than those in embryos. A total of 15 types of procyanidins, 10 types of kaempferol glycosides, and 21 types of quercetin glycosides that accumulated during endopleura development were identified. The analysis of the phenylpropane metabolic pathway showed that phenylalanine was gradually transformed into proanthocyanidins and other secondary metabolites with the development of endopleura. A total of 49 unigenes related to polyphenol synthesis were identified by transcriptome analysis of endopleura. The expression patterns of PAL, C4H, 4CL, CHS, CHI, F3H, LDOX, and ANR were similar, and their expression levels were highest in endopleura at maturity. Transcriptome and metabolome analysis showed that endopleura rapidly synthesized and accumulated polyphenols during maturation. Moreover, the transcription factor MYB111 played an important role in synthesizing polyphenols in endopleura, and its expression pattern was positively correlated with the accumulation pattern of quercetin, kaempferol, and proanthocyanidins. MYB111 was co-expressed with NAP, NAC, ATR1, and other genes related to cell senescence and abiotic stress response. Our study analyzed the composition and molecular synthesis mechanism of polyphenols in walnut endopleura, and provided new perspectives and insights regarding the nutritional research of walnut nuts.


Asunto(s)
Juglans , Proantocianidinas , Perfilación de la Expresión Génica , Glicósidos , Juglans/genética , Quempferoles , Metaboloma , Nueces/genética , Polifenoles , Quercetina , Transcriptoma
4.
J Proteome Res ; 19(8): 3487-3498, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32678604

RESUMEN

Enteroviruses (EVs) are major causes of viral meningoencephalitis in children. To better understand the pathogenesis and identify potential biomarkers, cerebrospinal fluid proteome in children (n = 52) suffering from EV meningoencephalitis was compared to that in EV-negative control subjects (n = 53) using the BoxCar acquisition technique. Among 1697 proteins identified, 1193 with robust assay readouts were used for quantitative analyses. Differential expression analyses identified 154 upregulated and 227 downregulated proteins in the EV-positive group. Functional analyses showed that the upregulated proteins are mainly related to activities of lymphocytes and cytokines, inflammation, and responses to stress and viral invasion, while the downregulated proteins are mainly related to neuronal integrity and activity as well as neurogenesis. According to receiver operating characteristic analysis results, Rho-GDP-dissociation inhibitor 2 exhibited the highest sensitivity (96.2%) and specificity (100%) for discriminating EV-positive from EV-negative patients. The chemokine CXCL10 was most upregulated (>300-fold) with also high sensitivity (92.3%) and specificity (94.3%) for indicating EV positivity. Thus, this study uncovered perturbations of multiple host processes due to EV meningoencephalitis, especially the general trend of enhanced immune responses but impaired neuronal functions. The identified dysregulated proteins may also prompt biomarker development.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Meningoencefalitis , Biomarcadores , Líquido Cefalorraquídeo , Niño , Enterovirus/genética , Infecciones por Enterovirus/diagnóstico , Infecciones por Enterovirus/genética , Humanos , Meningoencefalitis/diagnóstico , Proteómica
5.
J Proteome Res ; 19(1): 174-185, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31802674

RESUMEN

To elucidate the dynamic alterations of metabolites in rat plasma during liver regeneration and search for potential biomarkers of liver regeneration, 65 male Sprague-Dawley rats were divided into three groups: 70% partial hepatectomy group (PHx, n = 30), sham-operated group (Sham, n = 30), and pre-PHx group (pre-PHx, n = 5). Rats in the Sham and PHx groups were sacrificed after 30 min (min), 6 h (h), 24, 48, 72, and 168 h of surgery (n = 5 per time point). The gas chromatography-mass spectrometry-based metabolomic approach was used to identify the dynamic metabolites. Liver regeneration in the rats was evidenced by an increase in the liver weight/body weight ratio, expression of proliferating cell nuclear antigen, and yes-associated protein-1. Thirty-four differentially abundant metabolites between the Sham and PHx groups were identified, which were involved in arginine and proline metabolism, aminoacyl-tRNA biosynthesis, and cysteine and methionine metabolism pathways. Of these metabolites, low 1,5-anhydroglucitol may indicate proliferation of liver parenchymal cells during liver regeneration. Thus, a series of metabolic changes occurred with the progression of liver regeneration, and 1,5-anhydroglucitol could function as a novel hallmark of proliferation of liver parenchymal cells.


Asunto(s)
Hepatectomía , Regeneración Hepática , Animales , Hepatocitos , Hígado , Masculino , Ratas , Ratas Sprague-Dawley
6.
J Proteome Res ; 18(6): 2514-2524, 2019 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-31002254

RESUMEN

AIM: To evaluate the levels of metabolites and cytokines in the serum of patients with severe and non-severe idiosyncratic drug-induced liver injury (DILI) and to identify biomarkers of DILI severity. METHODS: Gas chromatography-mass spectrometry (GC-MS) and ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) based metabolomic approaches were used to evaluate the metabolome of serum samples from 29 DILI patients of severity grade 3 (non-severe), 27 of severity grade 4 (severe), and 36 healthy control (HC). The levels of total keratin-18 (K18), fragment K18, and 27 cytokines were determined by enzyme-linked immunosorbent assay. RESULTS: The alkaline phosphatase activity ( p = 0.021) and international normalized ratio (INR) ( p < 0.001) differed significantly between the severe and non-severe groups. The severe group had a higher serum fragment K18 level than the non-severe group. A multivariate analysis showed good separation between all pairs of the HC, non-severe, and severe groups. According to the orthogonal partial least-squares-discriminant analysis (OPLS-DA) model, 14 metabolites were selected by GC-MS and 17 by UPLC-MS. Among these metabolites, the levels of 16 were increased and of 15 were decreased in the severe group. A pathway analysis revealed major changes in the primary bile acid biosynthesis and alpha-linolenic acid metabolic pathways. The levels of PDGF-bb, IP-10, IL-1Rα, MIP-1ß, and TNF-α differed significantly between the severe and non-severe groups, and the levels of most of the metabolites were negatively correlated with those of these cytokines. An OPLS-DA model that included the detected metabolites and cytokines revealed clear separation of the severe and non-severe groups. CONCLUSION: We identified 31 metabolites and 5 cytokines related to the severity of idiosyncratic DILI. The primary bile acid biosynthesis and alpha-linolenic acid metabolism pathways were also related to the severity of DILI. A model that incorporated the metabolites and cytokines showed clear separation between patients with severe and non-severe DILI, suggesting that these biomarkers have potential as indicators of DILI severity.


Asunto(s)
Biomarcadores/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Citocinas/sangre , Metaboloma/genética , Metabolómica/métodos , Becaplermina/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Quimiocina CCL4/sangre , Quimiocina CXCL10/sangre , Citocinas/clasificación , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Proteína Antagonista del Receptor de Interleucina 1/sangre , Queratina-18/sangre , Masculino , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Espectrometría de Masas en Tándem , Factor de Necrosis Tumoral alfa/sangre
7.
Anal Bioanal Chem ; 411(2): 459-469, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30456605

RESUMEN

Despite being orthogonal to reverse-phase separation and valuable for posttranslational modification (PTM) pre-enrichment, hydrophilic interaction liquid chromatography (HILIC) has not been widely adopted for large-scale proteomic applications. Here, we first evaluated the performance of HILIC in comparison with the popular high-pH reverse-phase (HPRP) separation, as the first dimension for tryptic peptide fractionation in a shotgun workflow to characterize the complex 293T cell proteome. The data indicated that the complementary nature of HILIC and HPRP for peptide separation was mainly due to different hydrophobicity preferences. Realizing that uncaptured components from one mode can be resolved in the other mode, we then designed and compared two multidimensional separation schemes using HILIC and HPRP in tandem for peptide prefractionation, in terms of identification efficiency and coverage at peptide, protein, and PTM levels. A total of 22,604 and 23,566 peptides corresponding to 4481 and 4436 proteins from 293T cell lysate were detected using HILIC-HPRP- and HPRP-HILIC-based shotgun proteomics workflow, respectively. In addition, without assistance of enrichment techniques, the tandem fractionation methods aided to identify 46 different PTMs from over 10,000 of spectra using blind modification search algorithm. We concluded that HILIC is a valuable alternative option for peptide prefractionation in a large-scale proteomic study, but can be further augmented with the use of a secondary HPRP separation.


Asunto(s)
Fraccionamiento Químico/métodos , Cromatografía Liquida/métodos , Péptidos/química , Proteoma , Proteómica/métodos , Células HEK293 , Humanos , Espectrometría de Masas
8.
Phytother Res ; 33(4): 1055-1064, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30701601

RESUMEN

Tectorigenin has received attention due to its antiproliferation, anti-inflammatory, and antioxidant activities. In this study, we investigated the effects of tectorigenin on lipopolysaccharide (LPS)/D-galactosamine(D-GalN)-induced fulminant hepatic failure (FHF) in mice and LPS-stimulated macrophages (RAW 264.7 cells). Pretreatment with tectorigenin significantly reduced the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), histological injury, apoptosis, and the mortality of FHF mice, by suppressing the production of inflammatory cytokines such as TNF-α and IL-6. Tectorigenin also suppressed the activation of the inflammatory response in LPS-stimulated RAW 264.7 cells. Tectorigenin-induced protection is mediated through its mitigation of TLR4 expression, inhibition of mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) pathway activation, and promotion of autophagy in FHF mice and LPS-stimulated RAW 264.7 cells. Therefore, tectorigenin has therapeutic potential for FHF in mice via the regulation of TLR4/MAPK and TLR4/NF-κB pathways and autophagy.


Asunto(s)
Autofagia/efectos de los fármacos , Isoflavonas/farmacología , Fallo Hepático Agudo/prevención & control , Sustancias Protectoras/farmacología , Receptor Toll-Like 4/metabolismo , Animales , Apoptosis/efectos de los fármacos , Células Cultivadas , Humanos , Lipopolisacáridos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Fallo Hepático Agudo/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Células RAW 264.7 , Transducción de Señal/efectos de los fármacos
9.
Liver Int ; 38(11): 1930-1939, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29654711

RESUMEN

BACKGROUND & AIMS: Non-invasive assessment methods for liver fibrosis are urgently needed. The present study aimed to develop a novel diagnostic model for fibrosis staging in patients with chronic hepatitis B. METHODS: A cross-sectional set of 417 chronic hepatitis B patients who underwent liver biopsy was enrolled and the METAVIR score was adopted as the reference of fibrosis staging. RESULTS: Among thyroid hormones, only the level of free tetraiodothyronine (FT4) decreased gradually with the METAVIR fibrosis score (P < .001). FibroStage, a novel diagnosis model that incorporates data on FT4, platelets, cholinesterase, gamma-glutamyl transpeptidase, and age, was developed using the deriving set (n = 219). For the diagnosis of significant fibrosis, the FibroStage model had a significantly higher area under the receiver operating curve than did the FibroIndex, Forn, and Lok models (all of P < .01) and tended to better than the fibrosis-4 (P = .0791) but comparable with the aspartate transaminase-to-platelet ratio index model (P = .1694). For the diagnosis of advanced fibrosis, FibroStage had a higher area under the receiver operating curve than did the aspartate transaminase-to-platelet ratio index, FibroIndex, Forn, and Lok models (all of P < .05) and had a comparable area under the receiver operating curve with the fibrosis-4 model (P = .2109). For the diagnosis of cirrhosis, the area under the receiver operating curve of FibroStage was higher than those of the aspartate transaminase-to-platelet ratio index, fibrosis-4, FibroIndex, and Lok (all of P < .05) models and was comparable with Forn (P = .1649). These results was validated by a validation set (n = 198). CONCLUSION: FT4 may be an indicator for fibrosis staging in chronic hepatitis B patients. FibroStage is a better model than aspartate transaminase-to-platelet ratio index, fibrosis-4, FibroIndex, Forn, and Lok for the comprehensively diagnosis of significant and advanced fibrosis and cirrhosis.


Asunto(s)
Hepatitis B Crónica/complicaciones , Cirrosis Hepática/diagnóstico , Cirrosis Hepática/patología , Índice de Severidad de la Enfermedad , Tiroxina/sangre , Adulto , Estudios Transversales , Femenino , Humanos , Hígado/patología , Masculino , Persona de Mediana Edad , Curva ROC , Pruebas de Función de la Tiroides , Adulto Joven
11.
Front Med ; 17(3): 534-548, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37010727

RESUMEN

Autoimmune hepatitis (AIH) is a severe globally distributed liver disease that could occur at any age. Human menstrual blood-derived stem cells (MenSCs) have shown therapeutic effect in acute lung injury and liver failure. However, their role in the curative effect of AIH remains unclear. Here, a classic AIH mouse model was constructed through intravenous injection with concanavalin A (Con A). MenSCs were intravenously injected while Con A injection in the treatment groups. The results showed that the mortality by Con A injection was significantly decreased by MenSCs treatment and liver function tests and histological analysis were also ameliorated. The results of phosphoproteomic analysis and RNA-seq revealed that MenSCs improved AIH, mainly by apoptosis and c-Jun N-terminal kinase/mitogen-activated protein signaling pathways. Apoptosis analysis demonstrated that the protein expression of cleaved caspase 3 was increased by Con A injection and reduced by MenSCs transplantation, consistent with the TUNEL staining results. An AML12 co-culture system and JNK inhibitor (SP600125) were used to verify the JNK/MAPK and apoptosis signaling pathways. These findings suggested that MenSCs could be a promising strategy for AIH.


Asunto(s)
Hepatitis Autoinmune , Ratones , Animales , Humanos , Hepatitis Autoinmune/terapia , Hepatitis Autoinmune/metabolismo , Hepatitis Autoinmune/patología , Transducción de Señal , Modelos Animales de Enfermedad , Células Madre
12.
Front Oncol ; 13: 1067246, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37823052

RESUMEN

Accurate pathologic diagnosis and molecular classification of breast mass biopsy tissue is important for determining individualized therapy for (neo)adjuvant systemic therapies for invasive breast cancer. The CassiII rotational core biopsy system is a novel biopsy technique with a guide needle and a "stick-freeze" technology. The comprehensive assessments including the concordance rates of diagnosis and biomarker status between CassiII and core needle biopsy were evaluated in this study. Estrogen receptor (ER), progesterone receptor (PgR), human epidermal growth factor receptor 2 (HER2), and Ki67 were analyzed through immunohistochemistry. In total, 655 patients with breast cancer who underwent surgery after biopsy at Sir Run Run Shaw Hospital between January 2019 to December 2021 were evaluated. The concordance rates (CRs) of malignant surgical specimens with CassiII needle biopsy was significantly high compared with core needle biopsy. Moreover, CassiII needle biopsy had about 20% improvement in sensitivity and about 5% improvement in positive predictive value compared to Core needle biopsy. The characteristics including age and tumor size were identified the risk factors for pathological inconsistencies with core needle biopsies. However, CassiII needle biopsy was associated with tumor diameter only. The CRs of ER, PgR, HER2, and Ki67 using Cassi needle were 98.08% (kappa, 0.941; p<.001), 90.77% (kappa, 0.812; p<.001), 69.62% (kappa, 0.482; p<.001), and 86.92% (kappa, 0.552; p<.001), respectively. Post-biopsy complications with CassiII needle biopsy were also collected. The complications of CassiII needle biopsy including chest stuffiness, pain and subcutaneous ecchymosis are not rare. The underlying mechanism of subcutaneous congestion or hematoma after CassiII needle biopsy might be the larger needle diameter and the effect of temperature on coagulation function. In summary, CassiII needle biopsy is age-independent and has a better accuracy than CNB for distinguishing carcinoma in situ and invasive carcinoma.

13.
Heliyon ; 9(9): e19803, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37810030

RESUMEN

Background: Cancer-associated fibroblasts (CAFs) constitute the primary constituents of the tumor microenvironment (TME) and exert significant influences on cancer progression. However, adequate comprehension of CAF profiles in breast cancer, as well as the precise mechanisms underlying their promotion of cancer, remains lacking. Objectives: To discerns the biological differences between normal fibroblasts (NFs) and CAFs in breast cancer and explore the underlying mechanism. Methods: Three pairs of CAFs and NFs were isolated from breast cancer patients of diverse subtypes who had not undergone prior radiotherapy or chemotherapy. Morphological characteristics of CAFs and NFs were assessed through optical and electron microscopy, their biological attributes were examined using cell counting kits and transwell assays, and their impact on breast cancer cells was simulated using a coculture system. Furthermore, the miRNA profiles of CAFs and NFs were sequenced via an Illumina HiSeq 2500 platform. Results: CAFs exhibited higher growth rate and motility than NFs and a stronger potential to promote the malignancy of breast cancer cells. RNA sequencing of both NFs and CAFs revealed differentially expressed miRNAs with notable variability among distinct patients within their NFs and CAFs, while the enrichment of the target genes of differentially expressed miRNAs within both GO terms and KEGG pathways demonstrated significant similarity across patients with different profiles. Conclusion: CAFs have greater malignancy and higher potential to influence the growth, migration, invasion and chemoresistance of cocultured breast cancer cells than NFs. In addition, the miRNAs that are differentially expressed in CAFs when compared to NFs display substantial variability across patients with distinct breast cancer subtypes, while the enrichment of target genes regulated by these miRNAs, within GO terms and KEGG pathways, remains remarkably consistent among patients with varying profiles.

14.
Front Microbiol ; 13: 856471, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35516420

RESUMEN

Herpes simplex virus 1 (HSV-1) can productively infect multiple cell types and establish latent infection in neurons. Infected cell protein 0 (ICP0) is an HSV-1 E3 ubiquitin ligase crucial for productive infection and reactivation from latency. However, our knowledge about its targets especially in neuronal cells is limited. We confirmed that, like in non-neuronal cells, ICP0-null virus exhibited major replication defects in primary mouse neurons and Neuro-2a cells. We identified many ICP0-interacting proteins in Neuro-2a cells, 293T cells, and human foreskin fibroblasts by mass spectrometry-based interactome analysis. Co-immunoprecipitation assays validated ICP0 interactions with acyl-coenzyme A thioesterase 8 (ACOT8), complement C1q binding protein (C1QBP), ovarian tumour domain-containing protein 4 (OTUD4), sorting nexin 9 (SNX9), and vimentin (VIM) in both Neuro-2a and 293T cells. Overexpression and knockdown experiments showed that SNX9 restricted replication of an ICP0-null but not wild-type virus in Neuro-2a cells. Ubiquitinome analysis by immunoprecipitating the trypsin-digested ubiquitin reminant followed by mass spectrometry identified numerous candidate ubiquitination substrates of ICP0 in infected Neuro-2a cells, among which OTUD4 and VIM were novel substrates confirmed to be ubiquitinated by transfected ICP0 in Neuro-2a cells despite no evidence of their degradation by ICP0. Expression of OTUD4 was induced independently of ICP0 during HSV-1 infection. Overexpressed OTUD4 enhanced type I interferon expression during infection with the ICP0-null but not wild-type virus. In summary, by combining two proteomic approaches followed by confirmatory and functional experiments, we identified and validated multiple novel targets of ICP0 and revealed potential restrictive activities of SNX9 and OTUD4 in neuronal cells.

15.
Genomics Proteomics Bioinformatics ; 20(1): 163-176, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33662623

RESUMEN

Posttranslational modifications (PTMs) of proteins, particularly acetylation, phosphorylation, and ubiquitination, play critical roles in the host innate immune response. PTMs' dynamic changes and the crosstalk among them are complicated. To build a comprehensive dynamic network of inflammation-related proteins, we integrated data from the whole-cell proteome (WCP), acetylome, phosphoproteome, and ubiquitinome of human and mouse macrophages. Our datasets of acetylation, phosphorylation, and ubiquitination sites helped identify PTM crosstalk within and across proteins involved in the inflammatory response. Stimulation of macrophages by lipopolysaccharide (LPS) resulted in both degradative and non-degradative ubiquitination. Moreover, this study contributes to the interpretation of the roles of known inflammatory molecules and the discovery of novel inflammatory proteins.


Asunto(s)
Proteoma , Proteómica , Acetilación , Animales , Humanos , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , Ratones , Fosforilación , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Proteómica/métodos
16.
Biomark Res ; 10(1): 58, 2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-35962400

RESUMEN

Circulating tumor cells (CTCs) are cells that shed from a primary tumor and travel through the bloodstream. Studying the functional and molecular characteristics of CTCs may provide in-depth knowledge regarding highly lethal tumor diseases. Researchers are working to design devices and develop analytical methods that can capture and detect CTCs in whole blood from cancer patients with improved sensitivity and specificity. Techniques using whole blood samples utilize physical prosperity, immunoaffinity or a combination of the above methods and positive and negative enrichment during separation. Further analysis of CTCs is helpful in cancer monitoring, efficacy evaluation and designing of targeted cancer treatment methods. Although many advances have been achieved in the detection and molecular characterization of CTCs, several challenges still exist that limit the current use of this burgeoning diagnostic approach. In this review, a brief summary of the biological characterization of CTCs is presented. We focus on the current existing CTC detection methods and the potential clinical implications and challenges of CTCs. We also put forward our own views regarding the future development direction of CTCs.

17.
Stem Cell Res Ther ; 13(1): 57, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123555

RESUMEN

BACKGROUND: Cholestatic liver injury can lead to serious symptoms and prognoses in the clinic. Currently, an effective medical treatment is not available for cholestatic liver injury. Human menstrual blood-derived stem cells (MenSCs) are considered as an emerging treatment in various diseases. This study aimed to explore the treatment effect of MenSCs in cholestatic liver injury. METHODS: The treatment effect of MenSCs on chronic cholestatic liver injury was verified in 3,5-diethoxycarbonyl-1,4-dihydroxychollidine (DDC)-induced C57/BL6 mice. Pathological, fibrosis area in the liver tissue and serum liver enzymes were tested. Proteomics and western blot were used to explore the related targets and molecular mechanisms. Adeno-associated virus (AAV) 9-infected mice were applied for verification. RESULTS: MenSCs markedly improved the survival rate of the DDC-treated mice (60% vs. 100%), and decreased the mouse serum aspartate aminotransferase (AST) (169.4 vs. 108.0 U/L, p < 0.001), alanine aminotransferase (ALT) (279.0 vs. 228.9 U/L, p < 0.01), alkaline phosphatase (ALP) (45.6 vs. 10.6 U/L, p < 0.0001), direct bilirubin (DBIL) (108.3 vs. 14.0 µmol/L, p < 0.0001) and total bilirubin (TBIL) (179.2 vs. 43.3 µmol/L, p < 0.0001) levels as well as intrahepatic cholestasis, bile duct dilation and fibrotic areas (16.12 vs. 6.57%, p < 0.05). The results further indicated that MenSCs repaired the DDC-induced liver tight junction (TJ) pathway and bile transporter (OATP2, BSEP and NTCP1) injury, thereby inhibiting COL1A1, α-SMA and TGF-ß1 activation by upregulating liver ß-catenin expression. CONCLUSIONS: MenSC transplantation could be an effective treatment method for cholestatic liver injury in mice. MenSCs may exhibit therapeutic effects by regulating ß-catenin expression.


Asunto(s)
Colestasis , Hígado , Animales , Conductos Biliares , Células Sanguíneas , Colestasis/terapia , Humanos , Hígado/metabolismo , Menstruación , Ratones , Trasplante de Células Madre
18.
J Immunother Cancer ; 10(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36543379

RESUMEN

BACKGROUND: Triple-negative breast cancer is characterized by a poor prognosis and lack of targeted treatments, and thus, new targeting markers and therapeutic strategies are urgently needed. We previously indicated that PLAC8 promotes tumorigenesis and exerts multidrug resistance in breast cancer. Therefore, we aimed to characterize the PLAC8-regulated network in triple-negative breast cancer. METHODS: We measured the levels of PLAC8 in breast cancer cell lines and found that PLAC8 is post-translationally modified by ubiquitin-fold modifier 1 (UFM1). Then, we revealed a new regulatory system of PD-L1 by PLAC8 in triple-negative breast cancer. We also tested the molecular functions of PLAC8 in triple-negative breast cancer cell lines and measured the expression of PLAC8 and PD-L1 in breast cancer tissues. RESULTS: PLAC8 was generally highly expressed in triple-negative breast cancer and could be modified by UFM1, which maintains PLAC8 protein stability. Moreover, PLAC8 could promote cancer cell proliferation and affect the immune response by regulating the level of PD-L1 ubiquitination. Additionally, among patients with breast cancer, the expression of PLAC8 was higher in triple-negative breast cancer than in non-triple-negative breast cancer and positively correlated with the level of PD-L1. CONCLUSIONS: Our current study discoveries a new PLAC8-regulated network in triple-negative breast cancer and provides corresponding guidance for the clinical diagnosis and immunotherapy of triple-negative breast cancer.


Asunto(s)
Antígeno B7-H1 , Neoplasias de la Mama Triple Negativas , Humanos , Antígeno B7-H1/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Inmunoterapia , Inmunidad , Proliferación Celular , Proteínas/uso terapéutico
19.
J Agric Food Chem ; 69(1): 377-396, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33373225

RESUMEN

Walnut (Juglans regia L.) is a widely cultivated woody oilseed tree species, and its embryo is rich in polyunsaturated fatty acids. Thus far, the pathways and essential genes involved in oil biosynthesis in developing walnut embryos remain largely unclear. Our analyses revealed that a mature walnut embryo accumulated 69% oil, in which 71% were polyunsaturated fatty acids with 64% linoleic acid and 7% linolenic acid. RNA sequencing generated 39 384 unigenes in 24 cDNA libraries prepared from walnut embryos collected at 49, 63, 77, 91, 105, 119, 133, and 147 days after pollination (DAP). The principal components analysis (PCA) of samples and cluster analysis of differentially expressed genes (DEGs) showed that the total samples were divided into three main groups: 49 DAP, 63-119 DAP, and 133-147 DAP. We identified 108 unigenes associated with lipid biosynthesis, including 60 unigenes for fatty acid biosynthesis, 33 for triacylglycerol biosynthesis, 7 for oil bodies, and 8 for transcription factors. The expression levels of the genes encoding WRI1, ACCase, ACP, KASII, SAD, FAD2, FAD3, and PDAT were upregulated at 63-119 DAP relative to the levels at 49 DAP. Additionally, the lipid biosynthesis in walnut embryos began to increase while oil contents increased from 15 to 69%. We identified eight SAD, three FAD2, one FAD3, one FAD5, one FAD6, and three FAD7/8 genes. In addition, SAD, FAD2, and FAD3 were highly abundantly expressed in the walnut embryo, and their FPKM values achieved were 834, 2205, and 9038, respectively. High expression levels of FAD2 and FAD3 may be the reason why walnuts are rich in polyunsaturated fatty acids. Subcellular localization confirmed that the JrFAD3 protein played a role in the endoplasmic reticulum rather than the plastid, suggesting that linolenic acid was mainly synthesized in the endoplasmic reticulum. Weighted gene coexpression network analysis (WGCNA) showed that ACP, ENO, VAMP727, and IDD14 were coexpressed with WRI1. Our study provides large-scale and comprehensive transcriptome data of walnut embryo development. These data lay the foundation for the metabolic engineering of walnuts to increase oil contents and modify fatty acid compositions.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Juglans/embriología , Juglans/genética , Lípidos/biosíntesis , Proteínas de Plantas/genética , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Insaturados/química , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Juglans/metabolismo , Lípidos/química , Proteínas de Plantas/metabolismo , Transcriptoma
20.
Infect Microbes Dis ; 3(3): 149-157, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38630108

RESUMEN

The devastating coronavirus disease 2019 (COVID-19) pandemic has prompted worldwide efforts to study structural biological traits of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its viral components. Compared to the Spike protein, which is the primary target for currently available vaccines or antibodies, knowledge about other virion structural components is incomplete. Using high-resolution mass spectrometry, we report a comprehensive post-translational modification (PTM) analysis of nucleocapsid phosphoprotein (NCP), the most abundant structural component of the SARS-CoV-2 virion. In addition to phosphoryl groups, we show that the SARS-CoV-2 NCP is decorated with a variety of PTMs, including N-glycans and ubiquitin. Based on newly identified PTMs, refined protein structural models of SARS-CoV-2 NCP were proposed and potential immune recognition epitopes of NCP were aligned with PTMs. These data can facilitate the design of novel vaccines or therapeutics targeting NCP, as valuable alternatives to the current vaccination and treatment paradigm that is under threat of the ever-mutating SARS-CoV-2 Spike protein.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA