Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108351

RESUMEN

A comet assay is a trusted and widely used method for assessing DNA damage in individual eukaryotic cells. However, it is time-consuming and requires extensive monitoring and sample manipulation by the user. This limits the throughput of the assay, increases the risk of errors, and contributes to intra- and inter-laboratory variability. Here, we describe the development of a device which automates high throughput sample processing for a comet assay. This device is based upon our patented, high throughput, vertical comet assay electrophoresis tank, and incorporates our novel, patented combination of assay fluidics, temperature control, and a sliding electrophoresis tank to facilitate sample loading and removal. Additionally, we demonstrated that the automated device performs at least as well as our "manual" high throughput system, but with all the advantages of a fully "walkaway" device, such as a decreased need for human involvement and a decreased assay run time. Our automated device represents a valuable, high throughput approach for reliably assessing DNA damage with the minimal operator involvement, particularly if combined with the automated analysis of comets.


Asunto(s)
Daño del ADN , Células Eucariotas , Humanos , Ensayo Cometa/métodos
2.
Int J Mol Sci ; 20(23)2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-31810189

RESUMEN

Single cell gel electrophoresis, also known as the comet assay, has become a widespread DNA damage assessment tool due to its sensitivity, adaptability, low cost, ease of use, and reliability. Despite these benefits, this assay has shortcomings, such as long assay running time, the manipulation of multiple slides, individually, through numerous process steps, the challenge of working in a darkened environment, and reportedly considerable inter- and intra-laboratory variation. All researchers typically perform the comet assay based upon a common core approach; however, it appears that some steps in this core have little proven basis, and may exist, partly, out of convenience, or dogma. The aim of this study was to critically re-evaluate key steps in the comet assay, using our laboratory's protocol as a model, firstly to understand the scientific basis for why certain steps in the protocol are performed in a particular manner, and secondly to simplify the assay, and decrease the cost and run time. Here, the shelf life of the lysis and neutralization buffers, the effect of temperature and incubation period during the lysis step, the necessity for drying the slides between the electrophoresis and staining step, and the need to perform the sample workup and electrophoresis steps under subdued light were all evaluated.


Asunto(s)
Ensayo Cometa/métodos , Monitoreo del Ambiente/métodos , Análisis de la Célula Individual/métodos , Daño del ADN/genética , Humanos , Laboratorios/normas , Temperatura
3.
Int J Mol Sci ; 20(20)2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31618917

RESUMEN

The distribution of DNA damage and repair is considered to occur heterogeneously across the genome. However, commonly available techniques, such as the alkaline comet assay or HPLC-MS/MS, measure global genome levels of DNA damage, and do not reflect potentially significant events occurring at the gene/sequence-specific level, in the nuclear or mitochondrial genomes. We developed a method, which comprises a combination of Damaged DNA Immunoprecipitation and next generation sequencing (DDIP-seq), to assess the induction and repair of DNA damage induced by 0.1 J/cm2 solar-simulated radiation at the sequence-specific level, across both the entire nuclear and mitochondrial genomes. DDIP-seq generated a genome-wide, high-resolution map of cyclobutane thymine dimer (T<>T) location and intensity. In addition to being a straightforward approach, our results demonstrated a clear differential distribution of T<>T induction and loss, across both the nuclear and mitochondrial genomes. For nuclear DNA, this differential distribution existed at both the sequence and chromosome level. Levels of T<>T were much higher in the mitochondrial DNA, compared to nuclear DNA, and decreased with time, confirmed by qPCR, despite no reported mechanisms for their repair in this organelle. These data indicate the existence of regions of sensitivity and resistance to damage formation, together with regions that are fully repaired, and those for which > 90% of damage remains, after 24 h. This approach offers a simple, yet more detailed approach to studying cellular DNA damage and repair, which will aid our understanding of the link between DNA damage and disease.


Asunto(s)
Ciclobutanos/química , Heterogeneidad Genética , Genoma Mitocondrial , Estudio de Asociación del Genoma Completo , Genoma , Dímeros de Pirimidina/química , Supervivencia Celular/genética , Daño del ADN , Reparación del ADN , Secuenciación de Nucleótidos de Alto Rendimiento
4.
J Vis Exp ; (183)2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35635461

RESUMEN

Cells are continually exposed to agents arising from the internal and external environments, which may damage DNA. This damage can cause aberrant cell function, and therefore DNA damage may play a critical role in the development of, conceivably, all major human diseases, e.g., cancer, neurodegenerative and cardiovascular disease, and aging. Single-cell gel electrophoresis (i.e., the comet assay) is one of the most common and sensitive methods to study the formation and repair of a wide range of types of DNA damage (e.g., single- and double-strand breaks, alkali-labile sites, DNA-DNA crosslinks, and, in combination with certain repair enzymes, oxidized purines, and pyrimidines), in both in vitro and in vivo systems. However, the low sample throughput of the conventional assay and laborious sample workup are limiting factors to its widest possible application. With the "scoring" of comets increasingly automated, the limitation is now the ability to process significant numbers of comet slides. Here, a high-throughput (HTP) variant of the comet assay (HTP comet assay) has been developed, which significantly increases the number of samples analyzed, decreases assay run time, the number of individual slide manipulations, reagent requirements, and risk of physical damage to the gels. Furthermore, the footprint of the electrophoresis tank is significantly decreased due to the vertical orientation of the slides and integral cooling. Also reported here is a novel approach to chilling comet assay slides, which conveniently and efficiently facilitates the solidification of the comet gels. Here, the application of these devices to representative comet assay methods has been described. These simple innovations greatly support the use of the comet assay and its application to areas of study such as exposure biology, ecotoxicology, biomonitoring, toxicity screening/testing, together with understanding pathogenesis.


Asunto(s)
Daño del ADN , Reparación del ADN , Ensayo Cometa/métodos , ADN/análisis , Humanos , Pruebas de Toxicidad
5.
Redox Biol ; 42: 101872, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33579665

RESUMEN

Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2'-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2'-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 µL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease.


Asunto(s)
Ácidos Nucleicos , 8-Hidroxi-2'-Desoxicoguanosina , Biomarcadores , Cromatografía Liquida , Daño del ADN , Desoxiguanosina , Humanos , Estrés Oxidativo , Espectrometría de Masas en Tándem
6.
Artículo en Inglés | MEDLINE | ID: mdl-31561888

RESUMEN

Mycoplasma contamination is a major concern for in vitro cell culture models as its resistance to most antibiotics, which makes the prevention and treatment of infection challenging. Furthermore, numerous studies show that Mycoplasma infection alters a variety of cellular processes, in a wide range of cell lines. However, there is a lack of information pertaining to the effects of Mycoplasma infection on genomic stability. In this study, a dopaminergic neuronal cell line (BE-M17), a popular in vitro model for Parkinson's disease, was used to evaluate the effect of Mycoplasma infection on genomic instability, and base excision repair (BER) activity, using single cell gel electrophoresis (the comet assay). The results showed that Mycoplasma infection induced oxidative stress in the absence of an inflammatory response, with markedly increased levels of DNA damage [strand breaks/alkali-labile sites (SB/ALS), and oxidised purines], compared to uninfected cells. The source of the oxidative stress may have been increased ROS generation, or attenuation of cellular antioxidant capacity (or a combination of both). Uninfected cells initially repaired SB/ALS more rapidly than infected cells, although SB/ALS were fully repaired in both uninfected and infected cells 2 h after H2O2 challenge. However, while uninfected cells showed complete repair of oxidised purines within 24 h, for the infected cells, these were not fully repaired even after 30 h. In conclusion, this study showed that not only does Mycoplasma infection induce oxidative stress and DNA damage, but it also decreases the efficiency of the main pathway responsible for the repair of oxidatively damaged DNA i.e. BER. In this in vitro model, there is no mechanism for infection-induced inflammation, which could be a source of increased ROS production. Therefore, further studies are needed to evaluate how Mycoplasma infection causes oxidatively damaged DNA, and how it modulates cellular DNA repair.


Asunto(s)
Línea Celular Tumoral/microbiología , Mycoplasma , Ensayo Cometa , Roturas del ADN , Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN , Guanina/análogos & derivados , Guanina/análisis , Humanos , Peróxido de Hidrógeno/toxicidad , Neuroblastoma/patología , Estrés Oxidativo , Propidio , Purinas/análisis , Análisis de la Célula Individual , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA