Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37609923

RESUMEN

The formation of biomolecular condensates by liquid-liquid phase separation (LLPS) has become a universal mechanism for spatiotemporal coordination of biological activities in cells and has been widely observed to directly regulate the key cellular processes involved in cancer cell pathology. However, the complexity of protein sequences and the diversity of conformations are inherently disordered, which poses great challenges for LLPS protein calculations and experimental research. Herein, we proposed a novel predictor named PredLLPS_PSSM for LLPS protein identification based only on sequence evolution information. Because finding real and reliable samples is the cornerstone of building predictors, we collected anew and collated the LLPS proteins from the latest versions of three databases. By comparing the performance of the position-specific score matrix (PSSM) and word embedding, PredLLPS_PSSM combined PSSM-based information and two deep learning frameworks. Independent tests using three existing independent test datasets and two newly constructed independent test datasets demonstrated the superiority of PredLLPS_PSSM compared with state-of-the-art methods. Furthermore, we tested PredLLPS_PSSM on nine experimentally identified LLPS proteins from three insects that were not included in any of the databases. In addition, the powerful Shapley Additive exPlanation algorithm and heatmap were applied to find the most critical amino acids relevant to LLPS.


Asunto(s)
Redes Neurales de la Computación , Proteínas , Proteínas/química , Algoritmos , Aminoácidos/química , Secuencia de Aminoácidos
2.
Brief Bioinform ; 24(4)2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37291763

RESUMEN

BACKGROUND: Promoters are DNA regions that initiate the transcription of specific genes near the transcription start sites. In bacteria, promoters are recognized by RNA polymerases and associated sigma factors. Effective promoter recognition is essential for synthesizing the gene-encoded products by bacteria to grow and adapt to different environmental conditions. A variety of machine learning-based predictors for bacterial promoters have been developed; however, most of them were designed specifically for a particular species. To date, only a few predictors are available for identifying general bacterial promoters with limited predictive performance. RESULTS: In this study, we developed TIMER, a Siamese neural network-based approach for identifying both general and species-specific bacterial promoters. Specifically, TIMER uses DNA sequences as the input and employs three Siamese neural networks with the attention layers to train and optimize the models for a total of 13 species-specific and general bacterial promoters. Extensive 10-fold cross-validation and independent tests demonstrated that TIMER achieves a competitive performance and outperforms several existing methods on both general and species-specific promoter prediction. As an implementation of the proposed method, the web server of TIMER is publicly accessible at http://web.unimelb-bioinfortools.cloud.edu.au/TIMER/.


Asunto(s)
Bacterias , Redes Neurales de la Computación , Bacterias/genética , Bacterias/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Secuencia de Bases , Regiones Promotoras Genéticas
3.
Methods ; 227: 48-57, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38734394

RESUMEN

Studies have shown that protein glycosylation in cells reflects the real-time dynamics of biological processes, and the occurrence and development of many diseases are closely related to protein glycosylation. Abnormal protein glycosylation can be used as a potential diagnostic and prognostic marker of a disease, as well as a therapeutic target and a new breakthrough point for exploring pathogenesis. To address the issue of significant differences in the prediction results of previous models for different species, we constructed a hybrid deep learning model N-GlycoPred on the basis of dual-layer convolution, a paired attention mechanism and BiLSTM for accurate identification of N-glycosylation sites. By adopting one-hot encoding or the AAindex, we specifically selected the optimum combination of features and deep learning frameworks for human and mouse to refine the models. Based on six independent test datasets, our N-GlycoPred model achieved an average AUC of 0.9553, which is 0.23% higher than MusiteDeep. The comparison results indicate that our model can serve as a powerful tool for N-glycosylation site prescreening for biological researchers.


Asunto(s)
Aprendizaje Profundo , Glicosilación , Humanos , Animales , Ratones
4.
J Proteome Res ; 23(1): 95-106, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38054441

RESUMEN

O-linked ß-N-acetylglucosamine (O-GlcNAc) is a post-translational modification (i.e., O-GlcNAcylation) on serine/threonine residues of proteins, regulating a plethora of physiological and pathological events. As a dynamic process, O-GlcNAc functions in a site-specific manner. However, the experimental identification of the O-GlcNAc sites remains challenging in many scenarios. Herein, by leveraging the recent progress in cataloguing experimentally identified O-GlcNAc sites and advanced deep learning approaches, we establish an ensemble model, O-GlcNAcPRED-DL, a deep learning-based tool, for the prediction of O-GlcNAc sites. In brief, to make a benchmark O-GlcNAc data set, we extracted the information on O-GlcNAc from the recently constructed database O-GlcNAcAtlas, which contains thousands of experimentally identified and curated O-GlcNAc sites on proteins from multiple species. To overcome the imbalance between positive and negative data sets, we selected five groups of negative data sets in humans and mice to construct an ensemble predictor based on connection of a convolutional neural network and bidirectional long short-term memory. By taking into account three types of sequence information, we constructed four network frameworks, with the systematically optimized parameters used for the models. The thorough comparison analysis on two independent data sets of humans and mice and six independent data sets from other species demonstrated remarkably increased sensitivity and accuracy of the O-GlcNAcPRED-DL models, outperforming other existing tools. Moreover, a user-friendly Web server for O-GlcNAcPRED-DL has been constructed, which is freely available at http://oglcnac.org/pred_dl.


Asunto(s)
Aprendizaje Profundo , Humanos , Animales , Ratones , Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilglucosamina/química , N-Acetilglucosaminiltransferasas/metabolismo
5.
Brief Bioinform ; 23(2)2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35021193

RESUMEN

Promoters are crucial regulatory DNA regions for gene transcriptional activation. Rapid advances in next-generation sequencing technologies have accelerated the accumulation of genome sequences, providing increased training data to inform computational approaches for both prokaryotic and eukaryotic promoter prediction. However, it remains a significant challenge to accurately identify species-specific promoter sequences using computational approaches. To advance computational support for promoter prediction, in this study, we curated 58 comprehensive, up-to-date, benchmark datasets for 7 different species (i.e. Escherichia coli, Bacillus subtilis, Homo sapiens, Mus musculus, Arabidopsis thaliana, Zea mays and Drosophila melanogaster) to assist the research community to assess the relative functionality of alternative approaches and support future research on both prokaryotic and eukaryotic promoters. We revisited 106 predictors published since 2000 for promoter identification (40 for prokaryotic promoter, 61 for eukaryotic promoter, and 5 for both). We systematically evaluated their training datasets, computational methodologies, calculated features, performance and software usability. On the basis of these benchmark datasets, we benchmarked 19 predictors with functioning webservers/local tools and assessed their prediction performance. We found that deep learning and traditional machine learning-based approaches generally outperformed scoring function-based approaches. Taken together, the curated benchmark dataset repository and the benchmarking analysis in this study serve to inform the design and implementation of computational approaches for promoter prediction and facilitate more rigorous comparison of new techniques in the future.


Asunto(s)
Drosophila melanogaster , Eucariontes , Animales , Biología Computacional/métodos , Drosophila melanogaster/genética , Células Eucariotas , Ratones , Células Procariotas , Regiones Promotoras Genéticas
6.
Brief Bioinform ; 23(6)2022 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-36341591

RESUMEN

Subcellular localization of messenger RNAs (mRNAs) plays a key role in the spatial regulation of gene activity. The functions of mRNAs have been shown to be closely linked with their localizations. As such, understanding of the subcellular localizations of mRNAs can help elucidate gene regulatory networks. Despite several computational methods that have been developed to predict mRNA localizations within cells, there is still much room for improvement in predictive performance, especially for the multiple-location prediction. In this study, we proposed a novel multi-label multi-class predictor, termed Clarion, for mRNA subcellular localization prediction. Clarion was developed based on a manually curated benchmark dataset and leveraged the weighted series method for multi-label transformation. Extensive benchmarking tests demonstrated Clarion achieved competitive predictive performance and the weighted series method plays a crucial role in securing superior performance of Clarion. In addition, the independent test results indicate that Clarion outperformed the state-of-the-art methods and can secure accuracy of 81.47, 91.29, 79.77, 92.10, 89.15, 83.74, 80.74, 79.23 and 84.74% for chromatin, cytoplasm, cytosol, exosome, membrane, nucleolus, nucleoplasm, nucleus and ribosome, respectively. The webserver and local stand-alone tool of Clarion is freely available at http://monash.bioweb.cloud.edu.au/Clarion/.


Asunto(s)
Núcleo Celular , Proteínas , ARN Mensajero/genética , Núcleo Celular/genética , Biología Computacional/métodos , Bases de Datos de Proteínas
7.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34729589

RESUMEN

Conventional supervised binary classification algorithms have been widely applied to address significant research questions using biological and biomedical data. This classification scheme requires two fully labeled classes of data (e.g. positive and negative samples) to train a classification model. However, in many bioinformatics applications, labeling data is laborious, and the negative samples might be potentially mislabeled due to the limited sensitivity of the experimental equipment. The positive unlabeled (PU) learning scheme was therefore proposed to enable the classifier to learn directly from limited positive samples and a large number of unlabeled samples (i.e. a mixture of positive or negative samples). To date, several PU learning algorithms have been developed to address various biological questions, such as sequence identification, functional site characterization and interaction prediction. In this paper, we revisit a collection of 29 state-of-the-art PU learning bioinformatic applications to address various biological questions. Various important aspects are extensively discussed, including PU learning methodology, biological application, classifier design and evaluation strategy. We also comment on the existing issues of PU learning and offer our perspectives for the future development of PU learning applications. We anticipate that our work serves as an instrumental guideline for a better understanding of the PU learning framework in bioinformatics and further developing next-generation PU learning frameworks for critical biological applications.


Asunto(s)
Algoritmos , Biología Computacional , Biología Computacional/métodos , Aprendizaje Automático Supervisado
8.
J Chem Inf Model ; 64(7): 2393-2404, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37799091

RESUMEN

Antimicrobial peptides (AMPs) are small molecular polypeptides that can be widely used in the prevention and treatment of microbial infections. Although many computational models have been proposed to help identify AMPs, a high-performance and interpretable model is still lacking. In this study, new benchmark data sets are collected and processed, and a stacking deep architecture named AMPpred-MFA is carefully designed to discover and identify AMPs. Multiple features and a multihead attention mechanism are utilized on the basis of a bidirectional long short-term memory (LSTM) network and a convolutional neural network (CNN). The effectiveness of AMPpred-MFA is verified through five independent tests conducted in batches. Experimental results show that AMPpred-MFA achieves a state-of-the-art performance. The visualization interpretability analyses and ablation experiments offer a further understanding of the model behavior and performance, validating the importance of our feature representation and stacking architecture, especially the multihead attention mechanism. Therefore, AMPpred-MFA can be considered a reliable and efficient approach to understanding and predicting AMPs.


Asunto(s)
Péptidos Antimicrobianos , Benchmarking , Redes Neurales de la Computación
9.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33003205

RESUMEN

Long noncoding RNAs (lncRNAs) play significant roles in various physiological and pathological processes via their interactions with biomolecules like DNA, RNA and protein. The existing in silico methods used for predicting the functions of lncRNA mainly rely on calculating the similarity of lncRNA or investigating whether an lncRNA can interact with a specific biomolecule or disease. In this work, we explored the functions of lncRNA from a different perspective: we presented a tool for predicting the interaction biomolecule type for a given lncRNA. For this purpose, we first investigated the main molecular mechanisms of the interactions of lncRNA-RNA, lncRNA-protein and lncRNA-DNA. Then, we developed an ensemble deep learning model: lncIBTP (lncRNA Interaction Biomolecule Type Prediction). This model predicted the interactions between lncRNA and different types of biomolecules. On the 5-fold cross-validation, the lncIBTP achieves average values of 0.7042 in accuracy, 0.7903 and 0.6421 in macro-average area under receiver operating characteristic curve and precision-recall curve, respectively, which illustrates the model effectiveness. Besides, based on the analysis of the collected published data and prediction results, we hypothesized that the characteristics of lncRNAs that interacted with DNA may be different from those that interacted with only RNA.


Asunto(s)
Biología Computacional , Simulación por Computador , Aprendizaje Profundo , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
10.
Brief Bioinform ; 22(2): 2073-2084, 2021 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-32227075

RESUMEN

The development of deep sequencing technologies has led to the discovery of novel transcripts. Many in silico methods have been developed to assess the coding potential of these transcripts to further investigate their functions. Existing methods perform well on distinguishing majority long noncoding RNAs (lncRNAs) and coding RNAs (mRNAs) but poorly on RNAs with small open reading frames (sORFs). Here, we present DeepCPP (deep neural network for coding potential prediction), a deep learning method for RNA coding potential prediction. Extensive evaluations on four previous datasets and six new datasets constructed in different species show that DeepCPP outperforms other state-of-the-art methods, especially on sORF type data, which overcomes the bottleneck of sORF mRNA identification by improving more than 4.31, 37.24 and 5.89% on its accuracy for newly discovered human, vertebrate and insect data, respectively. Additionally, we also revealed that discontinuous k-mer, and our newly proposed nucleotide bias and minimal distribution similarity feature selection method play crucial roles in this classification problem. Taken together, DeepCPP is an effective method for RNA coding potential prediction.


Asunto(s)
Aprendizaje Profundo , Redes Neurales de la Computación , Animales , Humanos , Sistemas de Lectura Abierta , ARN Largo no Codificante/genética , ARN Mensajero/genética
11.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33227813

RESUMEN

A promoter is a region in the DNA sequence that defines where the transcription of a gene by RNA polymerase initiates, which is typically located proximal to the transcription start site (TSS). How to correctly identify the gene TSS and the core promoter is essential for our understanding of the transcriptional regulation of genes. As a complement to conventional experimental methods, computational techniques with easy-to-use platforms as essential bioinformatics tools can be effectively applied to annotate the functions and physiological roles of promoters. In this work, we propose a deep learning-based method termed Depicter (Deep learning for predicting promoter), for identifying three specific types of promoters, i.e. promoter sequences with the TATA-box (TATA model), promoter sequences without the TATA-box (non-TATA model), and indistinguishable promoters (TATA and non-TATA model). Depicter is developed based on an up-to-date, species-specific dataset which includes Homo sapiens, Mus musculus, Drosophila melanogaster and Arabidopsis thaliana promoters. A convolutional neural network coupled with capsule layers is proposed to train and optimize the prediction model of Depicter. Extensive benchmarking and independent tests demonstrate that Depicter achieves an improved predictive performance compared with several state-of-the-art methods. The webserver of Depicter is implemented and freely accessible at https://depicter.erc.monash.edu/.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Redes Neurales de la Computación , Regiones Promotoras Genéticas , Análisis de Secuencia de ADN , Programas Informáticos , Transcripción Genética , Animales , Arabidopsis , Biología Computacional , Drosophila melanogaster , Humanos , Ratones
12.
Brief Bioinform ; 22(3)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32608476

RESUMEN

DNA N4-methylcytosine (4mC) is an important epigenetic modification that plays a vital role in regulating DNA replication and expression. However, it is challenging to detect 4mC sites through experimental methods, which are time-consuming and costly. Thus, computational tools that can identify 4mC sites would be very useful for understanding the mechanism of this important type of DNA modification. Several machine learning-based 4mC predictors have been proposed in the past 3 years, although their performance is unsatisfactory. Deep learning is a promising technique for the development of more accurate 4mC site predictions. In this work, we propose a deep learning-based approach, called DeepTorrent, for improved prediction of 4mC sites from DNA sequences. It combines four different feature encoding schemes to encode raw DNA sequences and employs multi-layer convolutional neural networks with an inception module integrated with bidirectional long short-term memory to effectively learn the higher-order feature representations. Dimension reduction and concatenated feature maps from the filters of different sizes are then applied to the inception module. In addition, an attention mechanism and transfer learning techniques are also employed to train the robust predictor. Extensive benchmarking experiments demonstrate that DeepTorrent significantly improves the performance of 4mC site prediction compared with several state-of-the-art methods.


Asunto(s)
Metilación de ADN/genética , ADN/genética , Aprendizaje Profundo , Epigénesis Genética
13.
Brief Bioinform ; 21(3): 1069-1079, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31161204

RESUMEN

Post-translational modifications (PTMs) play very important roles in various cell signaling pathways and biological process. Due to PTMs' extremely important roles, many major PTMs have been studied, while the functional and mechanical characterization of major PTMs is well documented in several databases. However, most currently available databases mainly focus on protein sequences, while the real 3D structures of PTMs have been largely ignored. Therefore, studies of PTMs 3D structural signatures have been severely limited by the deficiency of the data. Here, we develop PRISMOID, a novel publicly available and free 3D structure database for a wide range of PTMs. PRISMOID represents an up-to-date and interactive online knowledge base with specific focus on 3D structural contexts of PTMs sites and mutations that occur on PTMs and in the close proximity of PTM sites with functional impact. The first version of PRISMOID encompasses 17 145 non-redundant modification sites on 3919 related protein 3D structure entries pertaining to 37 different types of PTMs. Our entry web page is organized in a comprehensive manner, including detailed PTM annotation on the 3D structure and biological information in terms of mutations affecting PTMs, secondary structure features and per-residue solvent accessibility features of PTM sites, domain context, predicted natively disordered regions and sequence alignments. In addition, high-definition JavaScript packages are employed to enhance information visualization in PRISMOID. PRISMOID equips a variety of interactive and customizable search options and data browsing functions; these capabilities allow users to access data via keyword, ID and advanced options combination search in an efficient and user-friendly way. A download page is also provided to enable users to download the SQL file, computational structural features and PTM sites' data. We anticipate PRISMOID will swiftly become an invaluable online resource, assisting both biologists and bioinformaticians to conduct experiments and develop applications supporting discovery efforts in the sequence-structural-functional relationship of PTMs and providing important insight into mutations and PTM sites interaction mechanisms. The PRISMOID database is freely accessible at http://prismoid.erc.monash.edu/. The database and web interface are implemented in MySQL, JSP, JavaScript and HTML with all major browsers supported.


Asunto(s)
Bases de Datos de Proteínas , Mutación , Procesamiento Proteico-Postraduccional , Proteínas/química , Conformación Proteica
14.
Bioinformatics ; 36(15): 4276-4282, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32426818

RESUMEN

MOTIVATION: Different from traditional linear RNAs (containing 5' and 3' ends), circular RNAs (circRNAs) are a special type of RNAs that have a closed ring structure. Accumulating evidence has indicated that circRNAs can directly bind proteins and participate in a myriad of different biological processes. RESULTS: For identifying the interaction of circRNAs with 37 different types of circRNA-binding proteins (RBPs), we develop an ensemble neural network, termed PASSION, which is based on the concatenated artificial neural network (ANN) and hybrid deep neural network frameworks. Specifically, the input of the ANN is the optimal feature subset for each RBP, which has been selected from six types of feature encoding schemes through incremental feature selection and application of the XGBoost algorithm. In turn, the input of the hybrid deep neural network is a stacked codon-based scheme. Benchmarking experiments indicate that the ensemble neural network reaches the average best area under the curve (AUC) of 0.883 across the 37 circRNA datasets when compared with XGBoost, k-nearest neighbor, support vector machine, random forest, logistic regression and Naive Bayes. Moreover, each of the 37 RBP models is extensively tested by performing independent tests, with the varying sequence similarity thresholds of 0.8, 0.7, 0.6 and 0.5, respectively. The corresponding average AUC obtained are 0.883, 0.876, 0.868 and 0.883, respectively, highlighting the effectiveness and robustness of PASSION. Extensive benchmarking experiments demonstrate that PASSION achieves a competitive performance for identifying binding sites between circRNA and RBPs, when compared with several state-of-the-art methods. AVAILABILITY AND IMPLEMENTATION: A user-friendly web server of PASSION is publicly accessible at http://flagship.erc.monash.edu/PASSION/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
ARN Circular , Proteínas de Unión al ARN , Teorema de Bayes , Sitios de Unión , Redes Neurales de la Computación , Proteínas de Unión al ARN/metabolismo
15.
Bioinformatics ; 35(4): 593-601, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30052767

RESUMEN

MOTIVATION: N4-methylcytosine (4mC), an important epigenetic modification formed by the action of specific methyltransferases, plays an essential role in DNA repair, expression and replication. The accurate identification of 4mC sites aids in-depth research to biological functions and mechanisms. Because, experimental identification of 4mC sites is time-consuming and costly, especially given the rapid accumulation of gene sequences. Supplementation with efficient computational methods is urgently needed. RESULTS: In this study, we developed a new tool, 4mCPred, for predicting 4mC sites in Caenorhabditis elegans, Drosophila melanogaster, Arabidopsis thaliana, Escherichia coli, Geoalkalibacter subterraneus and Geobacter pickeringii. 4mCPred consists of two independent models, 4mCPred_I and 4mCPred_II, for each species. The predictive results of independent and cross-species tests demonstrated that the performance of 4mCPred_I is a useful tool. To identify position-specific trinucleotide propensity (PSTNP) and electron-ion interaction potential features, we used the F-score method to construct predictive models and to compare their PSTNP features. Compared with other existing predictors, 4mCPred achieved much higher accuracies in rigorous jackknife and independent tests. We also analyzed the importance of different features in detail. AVAILABILITY AND IMPLEMENTATION: The web-server 4mCPred is accessible at http://server.malab.cn/4mCPred/index.jsp. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
ADN/química , Epigénesis Genética , Aprendizaje Automático , Programas Informáticos , Biología Computacional
16.
Bioinformatics ; 35(17): 2957-2965, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649179

RESUMEN

MOTIVATION: Promoters are short DNA consensus sequences that are localized proximal to the transcription start sites of genes, allowing transcription initiation of particular genes. However, the precise prediction of promoters remains a challenging task because individual promoters often differ from the consensus at one or more positions. RESULTS: In this study, we present a new multi-layer computational approach, called MULTiPly, for recognizing promoters and their specific types. MULTiPly took into account the sequences themselves, including both local information such as k-tuple nucleotide composition, dinucleotide-based auto covariance and global information of the entire samples based on bi-profile Bayes and k-nearest neighbour feature encodings. Specifically, the F-score feature selection method was applied to identify the best unique type of feature prediction results, in combination with other types of features that were subsequently added to further improve the prediction performance of MULTiPly. Benchmarking experiments on the benchmark dataset and comparisons with five state-of-the-art tools show that MULTiPly can achieve a better prediction performance on 5-fold cross-validation and jackknife tests. Moreover, the superiority of MULTiPly was also validated on a newly constructed independent test dataset. MULTiPly is expected to be used as a useful tool that will facilitate the discovery of both general and specific types of promoters in the post-genomic era. AVAILABILITY AND IMPLEMENTATION: The MULTiPly webserver and curated datasets are freely available at http://flagshipnt.erc.monash.edu/MULTiPly/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genómica , Regiones Promotoras Genéticas , Programas Informáticos , Teorema de Bayes , Sitio de Iniciación de la Transcripción
17.
Anal Biochem ; 593: 113592, 2020 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-31968210

RESUMEN

Lysine succinylation is an important type of protein post-translational modification and plays a key role in regulating protein function and structural changes. The mechanism and function of succinylation have not been clarified. The key to better understanding the precise mechanism and functional role of succinylation is the identification of lysine succinylation sites. However, conventional experimental methods for succinylation identification are often expensive, time-consuming, and labor-intensive. Therefore, the new development of computational approaches to effectively identify lysine succinylation sites from sequence data is much needed. In this study, we proposed a novel predictor for lysine succinylation identification, Inspector, which was developed by using the random forest algorithm combined with a variety of sequence-based feature-encoding schemes. Edited nearest-neighbor undersampling method and adaptive synthetic oversampling approach were employed to solve dataset imbalance, and a two-step feature-selection strategy was applied to optimize the feature set for training the accuracy of the prediction model. Empirical studies on performance comparison with existing tools showed that Inspector was able to achieve competitive predictive performance for distinguishing lysine succinylation sites.


Asunto(s)
Biología Computacional/métodos , Procesamiento Proteico-Postraduccional , Proteínas/química , Algoritmos , Bases de Datos de Proteínas , Lisina/química
18.
Bioinformatics ; 34(12): 2029-2036, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29420699

RESUMEN

Motivation: Protein O-GlcNAcylation (O-GlcNAc) is an important post-translational modification of serine (S)/threonine (T) residues that involves multiple molecular and cellular processes. Recent studies have suggested that abnormal O-G1cNAcylation causes many diseases, such as cancer and various neurodegenerative diseases. With the available protein O-G1cNAcylation sites experimentally verified, it is highly desired to develop automated methods to rapidly and effectively identify O-GlcNAcylation sites. Although some computational methods have been proposed, their performance has been unsatisfactory, particularly in terms of prediction sensitivity. Results: In this study, we developed an ensemble model O-GlcNAcPRED-II to identify potential O-GlcNAcylation sites. A K-means principal component analysis oversampling technique (KPCA) and fuzzy undersampling method (FUS) were first proposed and incorporated to reduce the proportion of the original positive and negative training samples. Then, rotation forest, a type of classifier-integrated system, was adopted to divide the eight types of feature space into several subsets using four sub-classifiers: random forest, k-nearest neighbour, naive Bayesian and support vector machine. We observed that O-GlcNAcPRED-II achieved a sensitivity of 81.05%, specificity of 95.91%, accuracy of 91.43% and Matthew's correlation coefficient of 0.7928 for five-fold cross-validation run 10 times. Additionally, the results obtained by O-GlcNAcPRED-II on two independent datasets also indicated that the proposed predictor outperformed five published prediction tools. Availability and implementation: http://121.42.167.206/OGlcPred/. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional/métodos , Procesamiento Proteico-Postraduccional , Proteómica/métodos , Máquina de Vectores de Soporte , Acetilglucosamina , Teorema de Bayes , Modelos Biológicos
19.
J Theor Biol ; 450: 15-21, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-29678692

RESUMEN

The nucleosome is the basic structure of chromatin in eukaryotic cells, with essential roles in the regulation of many biological processes, such as DNA transcription, replication and repair, and RNA splicing. Because of the importance of nucleosomes, the factors that determine their positioning within genomes should be investigated. High-resolution nucleosome-positioning maps are now available for organisms including Saccharomyces cerevisiae, Drosophila melanogaster and Caenorhabditis elegans, enabling the identification of nucleosome positioning by application of computational tools. Here, we describe a novel predictor called NucPosPred, which was specifically designed for large-scale identification of nucleosome positioning in C. elegans and D. melanogaster genomes. NucPosPred was separately optimized for each species for four types of DNA sequence feature extraction, with consideration of two classification algorithms (gradient-boosting decision tree and support vector machine). The overall accuracy obtained with NucPosPred was 92.29% for C. elegans and 88.26% for D. melanogaster, outperforming previous methods and demonstrating the potential for species-specific prediction of nucleosome positioning. For the convenience of most experimental scientists, a web-server for the predictor NucPosPred is available at http://121.42.167.206/NucPosPred/index.jsp.


Asunto(s)
Biología Computacional/métodos , Genoma , Nucleosomas/metabolismo , Algoritmos , Animales , Secuencia de Bases , Caenorhabditis elegans/genética , Ensamble y Desensamble de Cromatina , Drosophila melanogaster/genética , Especificidad de la Especie
20.
Molecules ; 23(12)2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30486421

RESUMEN

With the in-depth study of posttranslational modification sites, protein ubiquitination has become the key problem to study the molecular mechanism of posttranslational modification. Pupylation is a widely used process in which a prokaryotic ubiquitin-like protein (Pup) is attached to a substrate through a series of biochemical reactions. However, the experimental methods of identifying pupylation sites is often time-consuming and laborious. This study aims to propose an improved approach for predicting pupylation sites. Firstly, the Pearson correlation coefficient was used to reflect the correlation among different amino acid pairs calculated by the frequency of each amino acid. Then according to a descending ranked order, the multiple types of features were filtered separately by values of Pearson correlation coefficient. Thirdly, to get a qualified balanced dataset, the K-means principal component analysis (KPCA) oversampling technique was employed to synthesize new positive samples and Fuzzy undersampling method was employed to reduce the number of negative samples. Finally, the performance of our method was verified by means of jackknife and a 10-fold cross-validation test. The average results of 10-fold cross-validation showed that the sensitivity (Sn) was 90.53%, specificity (Sp) was 99.8%, accuracy (Acc) was 95.09%, and Matthews Correlation Coefficient (MCC) was 0.91. Moreover, an independent test dataset was used to further measure its performance, and the prediction results achieved the Acc of 83.75%, MCC of 0.49, which was superior to previous predictors. The better performance and stability of our proposed method showed it is an effective way to predict pupylation sites.


Asunto(s)
Proteínas Bacterianas/química , Análisis de Secuencia de Proteína/métodos , Ubiquitinación , Ubiquitinas/química , Proteínas Bacterianas/genética , Ubiquitinas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA