Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.334
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37657444

RESUMEN

N6-methyladenosine (m6A) RNA modification plays important roles in the governance of gene expression and is temporally regulated in different cell states. In contrast to global m6A profiling in bulk sequencing, single-cell technologies for analyzing m6A heterogeneity are not extensively established. Here, we developed single-nucleus m6A-CUT&Tag (sn-m6A-CT) for simultaneous profiling of m6A methylomes and transcriptomes within a single nucleus using mouse embryonic stem cells (mESCs). m6A-CT is capable of enriching m6A-marked RNA molecules in situ, without isolating RNAs from cells. We adapted m6A-CT to the droplet-based single-cell omics platform and demonstrated high-throughput performance in analyzing nuclei isolated from thousands of cells from various cell types. We show that sn-m6A-CT profiling is sufficient to determine cell identity and allows the generation of cell-type-specific m6A methylome landscapes from heterogeneous populations. These indicate that sn-m6A-CT provides additional dimensions to multimodal datasets and insights into epitranscriptomic landscape in defining cell fate identity and states.

2.
Cell ; 157(2): 472-485, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725412

RESUMEN

Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial and sporadic Parkinson's disease (PD). Elevated LRRK2 kinase activity and neurodegeneration are linked, but the phosphosubstrate that connects LRRK2 kinase activity to neurodegeneration is not known. Here, we show that ribosomal protein s15 is a key pathogenic LRRK2 substrate in Drosophila and human neuron PD models. Phosphodeficient s15 carrying a threonine 136 to alanine substitution rescues dopamine neuron degeneration and age-related locomotor deficits in G2019S LRRK2 transgenic Drosophila and substantially reduces G2019S LRRK2-mediated neurite loss and cell death in human dopamine and cortical neurons. Remarkably, pathogenic LRRK2 stimulates both cap-dependent and cap-independent mRNA translation and induces a bulk increase in protein synthesis in Drosophila, which can be prevented by phosphodeficient T136A s15. These results reveal a novel mechanism of PD pathogenesis linked to elevated LRRK2 kinase activity and aberrant protein synthesis in vivo.


Asunto(s)
Neuronas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Animales , Drosophila melanogaster , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Datos de Secuencia Molecular , Neuronas/patología , Enfermedad de Parkinson/patología , Proteínas Ribosómicas/química
3.
Nature ; 610(7930): 67-73, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36131017

RESUMEN

The high volatility of the price of cobalt and the geopolitical limitations of cobalt mining have made the elimination of Co a pressing need for the automotive industry1. Owing to their high energy density and low-cost advantages, high-Ni and low-Co or Co-free (zero-Co) layered cathodes have become the most promising cathodes for next-generation lithium-ion batteries2,3. However, current high-Ni cathode materials, without exception, suffer severely from their intrinsic thermal and chemo-mechanical instabilities and insufficient cycle life. Here, by using a new compositionally complex (high-entropy) doping strategy, we successfully fabricate a high-Ni, zero-Co layered cathode that has extremely high thermal and cycling stability. Combining X-ray diffraction, transmission electron microscopy and nanotomography, we find that the cathode exhibits nearly zero volumetric change over a wide electrochemical window, resulting in greatly reduced lattice defects and local strain-induced cracks. In-situ heating experiments reveal that the thermal stability of the new cathode is significantly improved, reaching the level of the ultra-stable NMC-532. Owing to the considerably increased thermal stability and the zero volumetric change, it exhibits greatly improved capacity retention. This work, by resolving the long-standing safety and stability concerns for high-Ni, zero-Co cathode materials, offers a commercially viable cathode for safe, long-life lithium-ion batteries and a universal strategy for suppressing strain and phase transformation in intercalation electrodes.

4.
Eur J Immunol ; : e2350655, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38973083

RESUMEN

Sepsis arises from an uncontrolled inflammatory response triggered by infection or stress, accompanied by alteration in cellular energy metabolism, and a strong correlation exists between these factors. Alpha-ketoglutarate (α-KG), an intermediate product of the TCA cycle, has the potential to modulate the inflammatory response and is considered a crucial link between energy metabolism and inflammation. The scavenger receptor (SR-A5), a significant pattern recognition receptor, assumes a vital function in anti-inflammatory reactions. In the current investigation, we have successfully illustrated the ability of α-KG to mitigate inflammatory factors in the serum of septic mice and ameliorate tissue damage. Additionally, α-KG has been shown to modulate metabolic reprogramming and macrophage polarization. Moreover, our findings indicate that the regulatory influence of α-KG on sepsis is mediated through SR-A5. We also elucidated the mechanism by which α-KG regulates SR-A5 expression and found that α-KG reduced the N6-methyladenosine level of macrophages by up-regulating the m6A demethylase ALKBH5. α-KG plays a crucial role in inhibiting inflammation by regulating SR-A5 expression through m6A demethylation during sepsis. The outcomes of this research provide valuable insights into the relationship between energy metabolism and inflammation regulation, as well as the underlying molecular regulatory mechanism.

5.
Nucleic Acids Res ; 51(21): 11439-11452, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37870474

RESUMEN

G-quadruplexes (G4) are special nucleic acid structures with diverse conformational polymorphisms. Selective targeting of G-quadruplex conformations and regulating their biological functions provide promising therapeutic intervention. Despite the large repertoire of G4-binding tools, only a limited number of them can specifically target a particular G4 conformation. Here, we introduce a novel method, G4-SELEX-Seq and report the development of the first L-RNA aptamer, L-Apt12-6, with high binding selectivity to parallel G4 over other nucleic acid structures. Using parallel dG4 c-kit 1 as an example, we demonstrate the strong binding affinity between L-Apt12-6 and c-kit 1 dG4 in vitro and in cells, and notably report the applications of L-Apt12-6 in controlling DNA replication and gene expression. Our results suggest that L-Apt12-6 is a valuable tool for targeting parallel G-quadruplex conformation and regulating G4-mediated biological processes. Furthermore, G4-SELEX-Seq can be used as a general platform for G4-targeting L-RNA aptamers selection and should be applicable to other nucleic acid structures.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Ácidos Nucleicos , Aptámeros de Nucleótidos/química
6.
Immunology ; 172(3): 469-485, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38544333

RESUMEN

Endometriosis is defined as an oestrogen-dependent and inflammatory gynaecological disease of which the pathogenesis remains unclear. This study aimed to investigate the cellular heterogeneity and reveal the effect of CD8+ T cells on the progress of endometriosis. Three ovarian endometriosis patients were collected, and single-cell RNA sequencing (scRNA-seq) progressed and delineated the cellular landscape of endometriosis containing five cell clusters. The endometrial cells (EMCs) were the major component, of which the mesenchymal cells were preponderant and characterized with increased inflammation and oestrogen synthesis in endometriosis. The proportion of T cells, mainly CD8+ T cells rather than CD4+, was reduced in endometriotic lesions, and the cytokines and cytotoxicity of ectopic T cells were depressed. CD8+ T cells depressed the proliferation of ESCs through inhibiting CDK1/CCNB1 pathway to arrest the cell cycle and triggered inflammation through activating STAT1 pathway. Correspondingly, the coculture with ESCs resulted in the dysfunction of CD8+ T cells through upregulating STAT1/PDCD1 pathway and glycolysis-promoted metabolism reprogramming. The endometriotic lesions were larger in nude mouse models with T-cell deficiency than the normal mouse models. The inhibition of T cells via CD90.2 or CD8A antibody increased the endometriotic lesions in mouse models, and the supplement of T cells to nude mouse models diminished the lesion sizes. In conclusion, this study revealed the global cellular variation of endometriosis among which the cellular count and physiology of EMCs and T cells were significantly changed. The depressed cytotoxicity and aberrant metabolism of CD8+ T cells were induced by ESCs with the activation of STAT1/PDCD1 pathway resulting in immune survival to promote endometriosis.


Asunto(s)
Linfocitos T CD8-positivos , Endometriosis , Factor de Transcripción STAT1 , Células del Estroma , Endometriosis/inmunología , Endometriosis/patología , Endometriosis/metabolismo , Femenino , Linfocitos T CD8-positivos/inmunología , Humanos , Animales , Ratones , Células del Estroma/inmunología , Células del Estroma/metabolismo , Factor de Transcripción STAT1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Endometrio/inmunología , Endometrio/patología , Modelos Animales de Enfermedad , Transducción de Señal , Ratones Desnudos , Adulto , Proteína Quinasa CDC2/metabolismo , Técnicas de Cocultivo , Citocinas/metabolismo
7.
J Am Chem Soc ; 146(22): 15576-15586, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38753821

RESUMEN

Selective synthesis of chiral bridged (hetero)bicyclic scaffolds via asymmetric C-H activation constitutes substantial challenges due to the multiple reactivities of strained bicyclic structures. Herein, we develop the domino transformations through an unprecedented cobalt-catalyzed enantioselective C-H activation/nucleophilic [3 + 2] annulation with symmetrical bicyclic alkenes. The methods offer straightforward access to a wide range of chiral molecules bearing [2.2.1]-bridged bicyclic cores with four and five consecutive stereocenters in a single step. Two elaborate salicyloxazoline (Salox) ligands were synthesized based on the rational design and mechanistic understanding. The well-defined chiral pockets generated from asymmetric coordination around the trivalent cobalt catalyst direct the orientation of bicyclic alkenes, leading to excellent enantioselectivity.

8.
Mol Biol Evol ; 40(5)2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37134013

RESUMEN

HIV-1 is a highly host-specific retrovirus that infects humans but not most nonhuman primates. Thus, the lack of a suitable primate model that can be directly infected with HIV-1 hinders HIV-1/AIDS research. In the previous study, we have found that the northern pig-tailed macaques (NPMs) are susceptible to HIV-1 infection but show a nonpathogenic state. In this study, to understand this macaque-HIV-1 interaction, we assembled a de novo genome and longitudinal transcriptome for this species during the course of HIV-1 infection. Using comparative genomic analysis, a positively selected gene, Toll-like receptor 8, was identified with a weak ability to induce an inflammatory response in this macaque. In addition, an interferon-stimulated gene, interferon alpha inducible protein 27, was upregulated in acute HIV-1 infection and acquired an enhanced ability to inhibit HIV-1 replication compared with its human ortholog. These findings coincide with the observation of persistently downregulated immune activation and low viral replication and can partially explain the AIDS-free state in this macaque following HIV-1 infection. This study identified a number of unexplored host genes that may hamper HIV-1 replication and pathogenicity in NPMs and provided new insights into the host defense mechanisms in cross-species infection of HIV-1. This work will facilitate the adoption of NPM as a feasible animal model for HIV-1/AIDS research.


Asunto(s)
Infecciones por VIH , VIH-1 , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca nemestrina , VIH-1/genética , Genómica , Virus de la Inmunodeficiencia de los Simios/genética
9.
Cancer Sci ; 115(7): 2159-2169, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695305

RESUMEN

Hepatocellular carcinoma (HCC), the most prevalent malignancy of the digestive tract, is characterized by a high mortality rate and poor prognosis, primarily due to its initial diagnosis at an advanced stage that precludes any surgical intervention. Recent advancements in systemic therapies have significantly improved oncological outcomes for intermediate and advanced-stage HCC, and the combination of locoregional and systemic therapies further facilitates tumor downstaging and increases the likelihood of surgical resectability for initially unresectable cases following conversion therapies. This shift toward high conversion rates with novel, multimodal treatment approaches has become a principal pathway for prolonged survival in patients with advanced HCC. However, the field of conversion therapy for HCC is marked by controversies, including the selection of potential surgical candidates, formulation of conversion therapy regimens, determination of optimal surgical timing, and application of adjuvant therapy post-surgery. Addressing these challenges and refining clinical protocols and research in HCC conversion therapy is essential for setting the groundwork for future advancements in treatment strategies and clinical research. This narrative review comprehensively summarizes the current strategies and clinical experiences in conversion therapy for advanced-stage HCC, emphasizing the unresolved issues and the path forward in the context of precision medicine. This work not only provides a comprehensive overview of the evolving landscape of treatment modalities for conversion therapy but also paves the way for future studies and innovations in this field.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Medicina de Precisión , Humanos , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patología , Medicina de Precisión/métodos , Terapia Combinada , Estadificación de Neoplasias , Hepatectomía
10.
J Cell Sci ; 135(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34114626

RESUMEN

The lipid content of mammalian cells varies greatly between cell type. Current methods for analysing lipid components of cells are technically challenging and destructive. Here, we report a facile, inexpensive method to identify lipid content - intracellular flow cytometric lipid analysis (IFCLA). Distinct lipid classes can be distinguished by Nile Blue fluorescence, Nile Red fluorescence or violet autofluorescence. Nile Blue is fluorescent in the presence of unsaturated fatty acids with a carbon chain length greater than 16. Cis-configured fatty acids induce greater Nile Blue fluorescence than their trans-configured counterparts. In contrast, Nile Red exhibits greatest fluorescence in the presence of cholesterol, cholesteryl esters, some triglycerides and phospholipids. Multiparametric spanning-tree progression analysis for density-normalized events (SPADE) analysis of hepatic cellular lipid distribution, including vitamin A autofluorescence, is presented. This flow cytometric system allows for the rapid, inexpensive and non-destructive identification of lipid content, and highlights the differences in lipid biology between cell types by imaging and flow cytometry.


Asunto(s)
Ésteres del Colesterol , Colesterol , Animales , Citometría de Flujo , Colorantes Fluorescentes , Fosfolípidos , Triglicéridos
11.
Artículo en Inglés | MEDLINE | ID: mdl-38987014

RESUMEN

BACKGROUND: Although the burden of alcohol-associated hepatocellular carcinoma (HCC) is increasing with rising alcohol consumption, clinical presentation and outcomes of alcohol-associated HCC have not been systematically assessed. We aimed to determine the prevalence, clinical characteristics, surveillance rates, treatment allocation, and outcomes of alcohol-associated HCC. METHODS: Medline and Embase were searched from inception to January 2023. Proportional data were analyzed using a generalized linear mixed model. The odds ratio (OR) or mean difference comparing alcohol-associated HCC and other causes was obtained with pairwise meta-analysis. Survival outcomes were evaluated using a pooled analysis of hazard ratios. RESULTS: Of 4824 records identified, 55 articles (86,345 patients) were included. Overall, 30.4% (95% confidence interval [CI], 24.0%-37.7%) of HCC was alcohol associated, with the highest proportion in Europe and the lowest in the Americas. People with alcohol-associated HCC were more likely male but were similar in age and comorbidities compared with other causes. A total of 20.8% (95% CI, 11.4%-34.9%) of people with alcohol-associated HCC underwent surveillance compared with 35.0%, 31.6%, and 21.4% in hepatitis B virus, hepatitis C virus, and metabolic dysfunction-associated HCC, respectively (all P < .05). Alcohol-associated HCC had a lower likelihood of Barcelona Clínic Liver Cancer C stage (0/A) (OR, 0.7; 95% CI, 0.6-0.9; P = .018) and curative therapy (24.5% vs 33.9%; OR, 0.7; 95% CI, 0.5-0.9; P = .003), and higher mortality (HR, 1.3; 95% CI, 1.1-1.5; P = .012) when compared with other causes. CONCLUSIONS: Alcohol-associated HCC is associated with lower surveillance rates, more advanced BCLC stage, lower likelihood of receiving curative therapy, and poorer survival. These data call for measures to reduce heavy alcohol consumption and improve strategies for effective HCC surveillance in high-risk individuals.

12.
Anal Chem ; 96(15): 5735-5740, 2024 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-38567982

RESUMEN

Lipid metabolic alterations are known to play a crucial role in cancer metastasis. As a key hub in lipid metabolism, intracellular neutral lipid accumulation in lipid droplets (LDs) has become a signature of aggressive human cancers. Nevertheless, it remains unclear whether lipid accumulation displays distinctive features in metastatic lesions compared to the primary ones. Here, we integrated multicolor stimulated Raman scattering (SRS) imaging with confocal Raman spectroscopy on the same platform to quantitatively analyze the amount and composition of LDs in intact human thyroid tissues in situ without any processing or labeling. Inspiringly, we found aberrant accumulation of triglycerides (TGs) in lymphatic metastases but not in normal thyroid, primary papillary thyroid carcinoma (PTC), or normal lymph node. In addition, the unsaturation degree of unsaturated TGs was significantly higher in the lymphatic metastases from patients diagnosed with late-stage (T3/T4) PTC compared to those of patients diagnosed with early-stage (T1/T2) PTC. Furthermore, both public sequencing data analysis and our RNA-seq transcriptomic experiment showed significantly higher expression of alcohol dehydrogenase-1B (ADH1B), which is critical to lipid uptake and transport, in lymphatic metastases relative to the primary ones. In summary, these findings unravel the lipid accumulation as a novel marker and therapeutic target for PTC lymphatic metastasis that has a poor response to the regular radioactive iodine therapy.


Asunto(s)
Carcinoma Papilar , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo , Metástasis Linfática , Neoplasias de la Tiroides/metabolismo , Carcinoma Papilar/tratamiento farmacológico , Carcinoma Papilar/patología , Radioisótopos de Yodo , Microscopía Óptica no Lineal , Lípidos
13.
Anal Chem ; 96(23): 9353-9361, 2024 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-38810149

RESUMEN

The retroperitoneal liposarcoma (RLPS) is a rare malignancy whose only curative therapy is surgical resection. However, well-differentiated liposarcomas (WDLPSs), one of its most common types, can hardly be distinguished from normal fat during operation without an effective margin assessment method, jeopardizing the prognosis severely with a high recurrence risk. Here, we combined dual label-free nonlinear optical modalities, stimulated Raman scattering (SRS) microscopy and second harmonic generation (SHG) microscopy, to image two predominant tissue biomolecules, lipids and collagen fibers, in 35 RLPSs and 34 normal fat samples collected from 35 patients. The produced dual-modal tissue images were used for RLPS diagnosis based on deep learning. Dramatically decreasing lipids and increasing collagen fibers during tumor progression were reflected. A ResNeXt101-based model achieved 94.7% overall accuracy and 0.987 mean area under the ROC curve (AUC) in differentiating among normal fat, WDLPSs, and dedifferentiated liposarcomas (DDLPSs). In particular, WDLPSs were detected with 94.1% precision and 84.6% sensitivity superior to existing methods. The ablation experiment showed that such performance was attributed to both SRS and SHG microscopies, which increased the sensitivity of recognizing WDLPS by 16.0 and 3.6%, respectively. Furthermore, we utilized this model on RLPS margins to identify the tumor infiltration. Our method holds great potential for accurate intraoperative liposarcoma detection.


Asunto(s)
Aprendizaje Profundo , Liposarcoma , Neoplasias Retroperitoneales , Humanos , Liposarcoma/diagnóstico por imagen , Liposarcoma/patología , Liposarcoma/diagnóstico , Neoplasias Retroperitoneales/diagnóstico por imagen , Neoplasias Retroperitoneales/patología , Neoplasias Retroperitoneales/diagnóstico , Espectrometría Raman/métodos , Microscopía/métodos , Microscopía de Generación del Segundo Armónico
14.
Anal Chem ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39024185

RESUMEN

Precise and reliable monitoring of DNA adenine methyltransferase (Dam) activity is essential for disease diagnosis and biological analysis. However, existing techniques for detecting Dam activity often rely on specific DNA recognition probes that are susceptible to DNA degradation and exhibit limited target sensitivity and specificity. In this study, we designed and engineered a stable and dynamic DNA nanodevice called the double-loop interlocked DNA circuit (DOOR) that enables the sensitive and selective monitoring of Dam activity in complex biological environments. The DOOR incorporates two interlocked specialized sequences: a palindromic sequence for Dam identification and an initiator sequence for signal amplification. In the presence of Dam, the DOOR is cleaved by double-stranded DNA phosphodiesterase I endonuclease, generating massive double-stranded DNA (dsDNA) units. These units can self-assemble into a long dsDNA scaffold, thereby enhancing the subsequent reaction kinetics. The dsDNA scaffold further triggers a hyperbranched hybrid chain reaction to produce a fluorescent 3D DNA nanonet, enabling more precise monitoring of the Dam activity. The DOOR device exhibits excellent sensitivity, specificity, and stability, rendering it a powerful tool for studying DNA methylation in various biological processes and diseases.

15.
Small ; 20(26): e2308861, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38372029

RESUMEN

The anabolism of tumor cells can not only support their proliferation, but also endow them with a steady influx of exogenous nutrients. Therefore, consuming metabolic substrates or limiting access to energy supply can be an effective strategy to impede tumor growth. Herein, a novel treatment paradigm of starving-like therapy-triple energy-depleting therapy-is illustrated by glucose oxidase (GOx)/dc-IR825/sorafenib liposomes (termed GISLs), and such a triple energy-depleting therapy exhibits a more effective tumor-killing effect than conventional starvation therapy that only cuts off one of the energy supplies. Specifically, GOx can continuously consume glucose and generate toxic H2O2 in the tumor microenvironment (including tumor cells). After endocytosis, dc-IR825 (a near-infrared cyanine dye) can precisely target mitochondria and exert photodynamic and photothermal activities upon laser irradiation to destroy mitochondria. The anti-angiogenesis effect of sorafenib can further block energy and nutrition supply from blood. This work exemplifies a facile and safe method to exhaust the energy in a tumor from three aspects and starve the tumor to death and also highlights the importance of energy depletion in tumor treatment. It is hoped that this work will inspire the development of more advanced platforms that can combine multiple energy depletion therapies to realize more effective tumor treatment.


Asunto(s)
Glucosa Oxidasa , Liposomas , Sorafenib , Liposomas/química , Humanos , Glucosa Oxidasa/metabolismo , Glucosa Oxidasa/química , Animales , Sorafenib/farmacología , Línea Celular Tumoral , Ratones , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos , Metabolismo Energético , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/química , Indoles
16.
Small ; 20(31): e2311823, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38456380

RESUMEN

Perception of UV radiation has important applications in medical health, industrial production, electronic communication, etc. In numerous application scenarios, there is an increasing demand for the intuitive and low-cost detection of UV radiation through colorimetric visual behavior, as well as the efficient and multi-functional utilization of UV radiation. However, photodetectors based on photoconductive modes or photosensitive colorimetric materials are not conducive to portable or multi-scene applications owing to their complex and expensive photosensitive components, potential photobleaching, and single-stimulus response behavior. Here, a multifunctional visual sensor based on the "host-guest photo-controlled permutation" strategy and the "lock and key" model is developed. The host-guest specific molecular recognition and electrochromic sensing platform is integrated at the micro-molecular scale, enabling multi-functional and multi-scene applications in the convenient and fast perception of UV radiation, military camouflage, and information erasure at the macro level of human-computer interaction through light-electrical co-controlled visual switching characteristics. This light-electrical co-controlled visual sensor based on an optoelectronic multi-mode sensing system is expected to provide new ideas and paradigms for healthcare, microelectronics manufacturing, and wearable electronic devices owing to its advantages of signal visualization, low energy consumption, low cost, and versatility.

17.
Small ; : e2400313, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552249

RESUMEN

Multicolor luminescence of organic fluorescent materials is an essential part of lighting and optical communication. However, the conventional construction of a multicolor luminescence system based on integrating multiple organic fluorescent materials of a single emission band remains complicated and to be improved. Herein, organic alloys (OAs) capable of full-color emission are synthesized based on charge transfer (CT) cocrystals. By adjusting the molar ratio of electron donors, the emission color of the OAs can be conveniently and continuously regulated in a wide visible range from blue (CIE: 0.187, 0.277), to green (CIE: 0.301, 0.550), and to red (CIE: 0.561, 0.435). The OAs show analogous 1D morphology with smooth surface, allowing for full-color waveguides with low optical-loss coefficient. Impressively, full-color optical displays are easily achieved through the OAs system with continuous emission, which shows promising applications in the field of optical display and promotes the development of organic photonics.

18.
J Virol ; 97(4): e0020023, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-36971578

RESUMEN

Tetherin prevents viral cross-species transmission by inhibiting the release of multiple enveloped viruses from infected cells. With the evolution of simian immunodeficiency virus of chimpanzees (SIVcpz), a pandemic human immunodeficiency virus type 1 (HIV-1) precursor, its Vpu protein can antagonize human tetherin (hTetherin). Macaca leonina (northern pig-tailed macaque [NPM]) is susceptible to HIV-1, but host-specific restriction factors limit virus replication in vivo. In this study, we isolated the virus from NPMs infected with strain stHIV-1sv (with a macaque-adapted HIV-1 env gene from simian-human immunodeficiency virus SHIV-KB9, a vif gene replaced by SIVmac239, and other genes originating from HIV-1NL4.3) and found that a single acidic amino acid substitution (G53D) in Vpu could increase its ability to degrade the tetherin of macaques (mTetherin) mainly through the proteasome pathway, resulting in an enhanced release and resistance to interferon inhibition of the mutant stHIV-1sv strain, with no influence on the other functions of Vpu. IMPORTANCE HIV-1 has obvious host specificity, which has greatly hindered the construction of animal models and severely restricted the development of HIV-1 vaccines and drugs. To overcome this barrier, we attempted to isolate the virus from NPMs infected with stHIV-1sv, search for a strain with an adaptive mutation in NPMs, and develop a more appropriate nonhuman primate model of HIV-1. This is the first report identifying HIV-1 adaptations in NPMs. It suggests that while tetherin may limit HIV-1 cross-species transmission, the Vpu protein in HIV-1 can overcome this species barrier through adaptive mutation, increasing viral replication in the new host. This finding will be beneficial to building an appropriate animal model for HIV-1 infection and promoting the development of HIV-1 vaccines and drugs.


Asunto(s)
Antígeno 2 del Estroma de la Médula Ósea , VIH-1 , Macaca , Proteínas Virales , Liberación del Virus , VIH-1/genética , VIH-1/patogenicidad , Proteínas Virales/genética , Proteínas Virales/metabolismo , Mutación , Antígeno 2 del Estroma de la Médula Ósea/metabolismo , Ubiquitina/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Liberación del Virus/genética , Sustitución de Aminoácidos/genética , Infecciones por VIH/virología , Modelos Animales de Enfermedad , Replicación Viral/genética
19.
Ann Surg Oncol ; 31(3): 1812-1822, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38038790

RESUMEN

BACKGROUND: Hepatic pedicle clamping (HPC) is frequently utilized during hepatectomy to reduce intraoperative bleeding and diminish the need for intraoperative blood transfusion (IBT). The long-term prognostic implications of HPC following hepatectomy for hepatocellular carcinoma (HCC) remain under debate. This study aims to elucidate the association between HPC and oncologic outcomes after HCC resection, stratified by whether IBT was administered. PATIENTS AND METHODS: Prospectively collected data on patients with HCC who underwent curative resection from a multicenter database was studied. Patients were stratified into two cohorts on the basis of whether IBT was administered. The impact of HPC on long-term overall survival (OS) and recurrence-free survival (RFS) between the two cohorts was assessed by univariable and multivariable Cox regression analyses. RESULTS: Of 3362 patients, 535 received IBT. In the IBT cohort, using or not using HPC showed no significant difference in OS and RFS outcomes (5-year OS and RFS rates 27.9% vs. 24.6% and 13.8% vs. 12.0%, P = 0.810 and 0.530). However, in the non-IBT cohort of 2827 patients, the HPC subgroup demonstrated significantly decreased OS (5-year 45.9% vs. 56.5%, P < 0.001) and RFS (5-year 24.7% vs. 33.3%, P < 0.001) when compared with the subgroup without HPC. Multivariable Cox regression analysis identified HPC as an independent risk factor of OS and RFS [hazard ratios (HR) 1.16 and 1.12, P = 0.024 and 0.044, respectively] among patients who did not receive IBT. CONCLUSIONS: The impact of HPC on the oncological outcomes following hepatectomy for patients with HCC differed significantly whether IBT was administered, and HPC adversely impacted on long-term survival for patients without receiving IBT during hepatectomy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/cirugía , Hepatectomía , Neoplasias Hepáticas/cirugía , Constricción , Estudios Retrospectivos , Pronóstico , Transfusión Sanguínea
20.
Heart Fail Rev ; 29(5): 883-907, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38896377

RESUMEN

Advances in the etiological classification of myocarditis and inflammatory cardiomyopathy (ICM) have reached a consensus. However, the mechanism of myocarditis/ICM remains unclear, which affects the development of treatment and the improvement of outcome. Cellular transcription and metabolic reprogramming, and the interactions between cardiomyocytes and non-cardiomyocytes, such as the immune cells, contribute to the process of myocarditis/ICM. Recent efforts have been made by multi-omics techniques, particularly in single-cell RNA sequencing, to gain a better understanding of the cellular landscape alteration occurring in disease during the progression. This article aims to provide a comprehensive overview of the latest studies in myocarditis/ICM, particularly as revealed by single-cell sequencing.


Asunto(s)
Cardiomiopatías , Miocarditis , Humanos , Miocarditis/fisiopatología , Miocarditis/metabolismo , Cardiomiopatías/etiología , Cardiomiopatías/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocardio/patología , Miocardio/metabolismo , Análisis de la Célula Individual/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA