Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Planta ; 248(4): 999-1015, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30006657

RESUMEN

MAIN CONCLUSION: Moringa oleifera TPSs were genome-wide identified for the first time, and a phylogenetic analysis was performed to investigate evolutionary divergence. The qRT-PCR data show that MoTPS genes response to different stress treatments. The trehalose-6-phosphate synthase (TPS) family is involved in a wide range of stress-resistance processes in plants. Its direct product, trehalose-6-phosphate, acts as a specific signal of sucrose status and a regulator to modulate carbon metabolism within the plant. In this study, eight TPS genes were identified and cloned based on the M. oleifera genome; only MoTPS1 exhibited TPS activity among Group I proteins. The characteristics of the MoTPS gene family were determined by analyzing phylogenetic relationships, gene structures, conserved motifs, selective forces, and expression patterns. The Group II MoTPS genes were under relaxed purifying selection or positive selection. The glycosyltransferase family 20 domains generally had lower Ka/Ks ratios and nonsynonymous (Ka) changes compared with those of trehalose-phosphatase domains, which is consistent with stronger purifying selection due to functional constraints in performing TPS enzyme activity. Phylogenetic analyses of TPS proteins from M. oleifera and 17 other plant species indicated that TPS were present before the monocot-dicot split, whereas Group II TPSs were duplicated after the separation of dicots and monocots. Quantitative real-time PCR analysis showed that the expression patterns of TPSs displayed group specificities in M. oleifera. Particularly, Group I MoTPS genes closely relate to reproductive development and Group II MoTPS genes closely relate to high temperature resistance in leaves, stem, stem tip and roots. This work provides a scientific classification of plant TPSs, dissects the internal relationships between their evolution and expressions, and promotes functional researches.


Asunto(s)
Evolución Molecular , Glucosiltransferasas/genética , Moringa oleifera/genética , Proteínas de Plantas/genética , Clonación Molecular , Sequías , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Glucosiltransferasas/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Dominios Proteicos , Salinidad , Temperatura , Levaduras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA