Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 606(7914): 535-541, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35676481

RESUMEN

Potato (Solanum tuberosum L.) is the world's most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production1-4. So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota, the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum. Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop.


Asunto(s)
Productos Agrícolas , Evolución Molecular , Genoma de Planta , Solanum tuberosum , Productos Agrícolas/genética , Genoma de Planta/genética , Fitomejoramiento , Tubérculos de la Planta/genética , Solanum tuberosum/genética
2.
Mol Cell ; 66(1): 117-128.e5, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28344081

RESUMEN

In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Membrana Celular/enzimología , Núcleo Celular/enzimología , Frío , Respuesta al Choque por Frío , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Sensación Térmica , Factores de Transcripción/metabolismo , Proteínas 14-3-3/genética , Transporte Activo de Núcleo Celular , Adaptación Fisiológica , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Activación Enzimática , Genotipo , Fluidez de la Membrana , Mutación , Fenotipo , Fosforilación , Plantas Modificadas Genéticamente , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Estabilidad Proteica , Proteolisis , Factores de Tiempo , Factores de Transcripción/genética
3.
EMBO J ; 39(13): e103630, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32449547

RESUMEN

Light and temperature are two core environmental factors that coordinately regulate plant growth and survival throughout their entire life cycle. However, the mechanisms integrating light and temperature signaling pathways in plants remain poorly understood. Here, we report that CBF1, an AP2/ERF-family transcription factor essential for plant cold acclimation, promotes hypocotyl growth under ambient temperatures in Arabidopsis. We show that CBF1 increases the protein abundance of PIF4 and PIF5, two phytochrome-interacting bHLH-family transcription factors that play pivotal roles in modulating plant growth and development, by directly binding to their promoters to induce their gene expression, and by inhibiting their interaction with phyB in the light. Moreover, our data demonstrate that CBF1 promotes PIF4/PIF5 protein accumulation and hypocotyl growth at both 22°C and 17°C, but not at 4°C, with a more prominent role at 17°C than at 22°C. Together, our study reveals that CBF1 integrates light and temperature control of hypocotyl growth by promoting PIF4 and PIF5 protein abundance in the light, thus providing insights into the integration mechanisms of light and temperature signaling pathways in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Hipocótilo/crecimiento & desarrollo , Temperatura , Transactivadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Hipocótilo/genética , Transactivadores/genética
4.
Small ; : e2307216, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38078782

RESUMEN

Phosphors with narrow-band green emissions and high photoluminescent quantum efficiency (PLQY) are significantly required for backlighting displays with wider color gamut. In this work, two centimeter-sized manganese (II) halide single crystals TMG2 MnCl4 and TMG2 MnBr4 (TMG = 1,1,3,3-tetramethylguanidine) are synthesized, exhibiting bright narrow-band green emissions with high PLQYs up to 62% and 90%, respectively. The narrow-band green light emission is located at 520 nm with a full-width at half-maximum (FWHM) of only 57 nm. The photoluminescence mechanisms of two single crystals are elaborated. Two white-light-emitting diodes for backlighting displays (BD-WLEDs) based on them are fabricated, exhibiting the widest color gamut of 122% National Television Standards Committee (NTSC), and a luminous efficacy reached ≈93 lm W-1 with excellent luminescence stability at high temperatures. These properties indicate the potential applications of tetrahedral manganese (II) hybrids in wide-color gamut backlighting displays.

5.
Cell Immunol ; 383: 104651, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36493524

RESUMEN

Lipopolysaccharides (LPS) is one of the most potent pathogen-associated signals for the immune system of vertebrates. In addition to the canonical pathway of LPS detection mediated by toll-like receptor 4 (TLR4) signaling pathway, TRP channel-mediated pathways endow sensory neurons and epithelial cells with the ability to detect and react to bacterial endotoxins. Previous work revealed that LPS triggers TRPV4-dependent calcium influx in urothelial cells (UCs) and mouse tracheobronchial epithelial cells (mTEC). In marked contrast, here we show that most subtypes of LPS could not directly activate TRPV4 channel. Although LPS from Salmonella enterica serotype Minnesota evoked a [Ca2+]i response in freshly isolated human bronchial epithelial cells (ECs), freshly isolated mouse ear skin single-cell suspensions, or HEK293T cells transiently transfected with mTRPV4, this activation occurred in a TRPV4-independent manner. Additionally, LPS from either E. coli strains or Salmonella enterica serotype Minnesota did not evoke significant difference in inflammation and pain hyperalgesia between wild type and TRPV4 deficient mice. In summary, our results demonstrate that in vitro and in vivo effects induced by LPS are independent of TRPV4, thus providing a clarity to the questioned role of LPS in TRPV4 activation.


Asunto(s)
Señalización del Calcio , Lipopolisacáridos , Canales Catiónicos TRPV , Animales , Humanos , Ratones , Calcio/metabolismo , Señalización del Calcio/fisiología , Escherichia coli/patogenicidad , Células HEK293 , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/farmacología , Salmonella enterica/patogenicidad
6.
Wound Repair Regen ; 31(4): 489-499, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37129099

RESUMEN

Immunosuppressive medications, which interfere with the activation and proliferation of T and B cells, increase the risk of wound healing complications. To address it, this study aimed to validate the feasibility of drug suspending during wound healing, whilst exploring the mechanisms exerted by T cells, which are important in the wound healing process. For this, a mouse skin wound model was set up. Tacrolimus (FK506) and fingolimod (FTY720) were both administered intraperitoneally prior to wounding to inhibit the T cell activation and migration, respectively. Flow-cytometric analysis subsequently revealed the functional T cell subtypes detected during the healing process. A CD8a antibody was also administered to deplete CD8+ T cells in vivo to verify their specific function. It was found that FK506 or FTY720 administration delayed the early phase of wound healing by reducing collagen production, which was also supported by the downregulation of col1a1, col3a1 and tgfb1. However, there was no significant difference in the total healing period. Both spleen- and skin-derived CD8+ T cells were proliferated and activated after injury without intervention, whereas CD4+ T cells showed no significant changes. Furthermore, selectively depleting CD8+ T cells retarded the healing process by downregulating collagen production-associated genes (col1a1, col3a1, tgfß1 and en1) and proteins (collagen type 1 and 3). In addition, the CD8a antibody decreased the expression of genes lta, tnfa, il13 and il13ra, and protein interleukin-13Rα. In conclusion, suspending immunosuppressive drugs during wound healing was shown to be feasible through restraining the migration of activated T cells. CD8+ T cells represented the primary functional subtype positively associated with wound healing.


Asunto(s)
Linfocitos T CD8-positivos , Cicatrización de Heridas , Ratones , Animales , Linfocitos T CD8-positivos/metabolismo , Tacrolimus/farmacología , Tacrolimus/metabolismo , Preparaciones Farmacéuticas/metabolismo , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/uso terapéutico , Colágeno/metabolismo , Terapia de Inmunosupresión
8.
EMBO J ; 37(8)2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29507081

RESUMEN

Cold stress is a major environmental factor that negatively affects plant growth and survival. OST1 has been identified as a key protein kinase in plant response to cold stress; however, little is known about the underlying molecular mechanism. In this study, we identified BTF3 and BTF3L (BTF3-like), ß-subunits of a nascent polypeptide-associated complex (NAC), as OST1 substrates that positively regulate freezing tolerance. OST1 phosphorylates BTF3 and BTF3L in vitro and in vivo, and facilitates their interaction with C-repeat-binding factors (CBFs) to promote CBF stability under cold stress. The phosphorylation of BTF3L at the Ser50 residue by OST1 is required for its function in regulating freezing tolerance. In addition, BTF3 and BTF3L proteins positively regulate the expression of CBF genes. These findings unravel a molecular mechanism by which OST1-BTF3-CBF module regulates plant response to cold stress.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Frío , Proteínas Quinasas/fisiología , Estrés Fisiológico/fisiología , Factores de Transcripción/fisiología , Arabidopsis/fisiología , Fosforilación
9.
Neoplasma ; 69(5): 995-1007, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35786997

RESUMEN

Despite attempts to apply single therapy such as surgical treatment, chemotherapy, or radiotherapy, pancreatic cancer (PC) is still one of the most lethal solid tumors. Moreover, immune checkpoint inhibitors against PD-1/PD-L1, which have shown good efficacies against many other solid tumors, have not shown encouraging results in PC treatment. Therefore, some studies are evaluating the efficacies of combination therapies based on anti-PD-1/PD-L1 for PC. In this review, we summarized the emerging anti-PD-1/PD-L1 combination therapies for PC in these years. We realized that anti-PD-1/PD-L1-based combination therapies have the potential to be efficacious in PC treatment, and further relevant studies are needed. Moreover, we elucidated the reasons for the ineffectiveness of anti-PD-1/PD-L1 alone in PC treatment. We concluded that this was mainly because PC has an immunosuppressive tumor microenvironment and develops drug resistance during treatment. Anti-PD-1/PD-L1-based combination therapeutic regimens that alter the immunosuppressive tumor microenvironment and reduce the development of drug resistance in PC are summarized in this review, and we expect that these regimens will achieve good clinical application prospects.


Asunto(s)
Antígeno B7-H1 , Neoplasias Pancreáticas , Humanos , Inhibidores de Puntos de Control Inmunológico , Inmunoterapia/métodos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Microambiente Tumoral , Receptor de Muerte Celular Programada 1 , Neoplasias Pancreáticas
10.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077405

RESUMEN

Brown adipose tissue (BAT) is functionally linked to skeletal muscle because both tissues originate from a common progenitor cell, but the precise mechanism controlling muscle-to-brown-fat communication is insufficiently understood. This report demonstrates that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a marker of mesenchymal stromal/stem cells, is critical for the control of BAT mitochondrial function and whole-body energy homeostasis. The mice loss of Islr in BAT after cardiotoxin injury resulted in improved mitochondrial function, increased energy expenditure, and enhanced thermogenesis. Importantly, it was found that interleukin-6 (IL-6), as a myokine, participates in this process. Mechanistically, Islr interacts with NADH: Ubiquinone Oxidoreductase Core Subunit S2 (Ndufs2) to regulate IL-6 signaling; consequently, Islr functions as a brake that prevents IL-6 from promoting BAT activity. Together, these findings reveal a previously unrecognized mechanism for muscle-BAT cross talk driven by Islr, Ndufs2, and IL-6 to regulate energy homeostasis, which may be used as a potential therapeutic target in obesity.


Asunto(s)
Tejido Adiposo Pardo , Interleucina-6 , Tejido Adiposo Pardo/metabolismo , Animales , Diferenciación Celular , Metabolismo Energético , Homeostasis , Inmunoglobulinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Leucina/metabolismo , Ratones , Músculo Esquelético/metabolismo , NADH Deshidrogenasa/metabolismo , Termogénesis
11.
New Phytol ; 212(2): 345-53, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27353960

RESUMEN

In Arabidopsis, the C-repeat binding factors (CBFs) have been extensively studied as key transcription factors in the cold stress response. However, their exact functions in the cold response remains unclear due to the lack of a null cbf triple mutant. In this study, we used CRISPR/Cas9 technology to mutate CBF1 or CBF1/CBF2 in a cbf3 T-DNA insertion mutant to generate cbf1,3 double and cbf1 cbf2 cbf3 (cbfs) triple mutants. The response of the cbfs triple mutants to chilling stress is impaired. Furthermore, no significant difference in freezing tolerance was observed between the wild-type and the cbf1,3 and cbfs mutants without cold acclimation. However, the cbfs mutants were extremely sensitive to freezing stress after cold acclimation, and freezing sensitivity ranking was cbfs > cbf1,3 > cbf3. RNA-Seq analysis showed that 134 genes were CBF regulated, of which 112 were regulated positively and 22 negatively by CBFs. Our study reveals the essential functions of CBFs in chilling stress response and cold acclimation, as well as defines a set of genes as CBF regulon. It also provides materials for the genetic dissection of components in CBF-dependent cold signaling.


Asunto(s)
Aclimatación/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiología , Frío , Mutación/genética , Regulón/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Congelación , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Análisis de Secuencia de ARN , Estrés Fisiológico/genética , Transcriptoma/genética
12.
ACS Appl Mater Interfaces ; 16(12): 14809-14821, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38497947

RESUMEN

Amorphous carbon nitride with typical short-range order arrangement as an effective photocatalyst is worth exploring but remains a great challenge because its disordered structure induces severe recombination of photogenerated charge carriers. Herein, for the first time, we demonstrate that a hierarchical amorphous carbon nitride (HACN) with structural oxygen incorporation can be synthesized via a cyanuric acid-assisted melem hydrothermal process, accompanied by freeze-drying and pyrolysis. The complex composed of melem and cyanuric acid exhibiting a unique 3D self-supporting skeleton and significant phase transformation is responsible for the formation of an interconnected hierarchical framework and amorphous structure for HACN. These features are beneficial to enhance its visible light harvesting by the multiple-reflection effect within the architecture consisting of more exposed porous nanosheets and introducing a long band tail absorption. The well-designed morphology, band tail state, and oxygen doping effectively inhibit rapid band-to-band recombination of the photogenerated electrons and holes and facilitate subsequent separation. Accordingly, the HACN catalyst exhibits exceptional visible light (λ > 420 nm)-driven photoreduction for hydrogen production with a rate of 82.4 µmol h-1, which is 21.7 and 9.5 times higher than those of melem-derived carbon nitride and crystalline nanotube carbon nitride counterparts, respectively, and significantly surpasses those of most reported amorphous carbon nitrides. Our controlling of rearrangement of the in situ supramolecular self-assembly of melem oligomer using cyanuric acid directly instructs the development of highly efficient amorphous photocatalysts for converting solar energy into hydrogen fuel.

13.
Talanta ; 275: 126148, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38705016

RESUMEN

Latent fingerprints, as one of the most frequently encountered traces in crime scene investigation and also one of the largest sources of forensic evidence, can play a critical role in determining the identity of a person who may be involved in a crime. Due to the invisible characteristic of latent fingerprints, exploring efficient techniques to visualize them (especially the ones resided on metallic surfaces) while retain the biological and chemical information (e.g., touch DNA) has become a multidisciplinary research focus. Herein we reported a new and highly sensitive electrochemical interfacial strategy of simultaneously developing and enhancing latent fingerprints on stainless steel based on synchronous electrodeposition and electrochromism of manganese oxides in a neutral aqueous electrolyte. By utilizing a specially designed device for electrochemical testing and image capture, a series of electrochemical measurements, physical characterization and image analysis have been applied to evaluate the feasibility, development accuracy and enhancement efficacy of the proposed electrochemical system. The qualitative and quantitative analysis on the in situ and ex situ fingerprint images indicates that the three levels of fingerprint features can be precisely developed and effectively enhanced. Forensic DNA typing has also been performed to reveal actual impact of the proposed electrochemical system on subsequent analysis of touch DNA in fingerprint residues. The ratio of detected loci after electrochemical treatment reaches up to 98.5 %, showing non-destructive nature of this fingerprint development and enhancement technique.

14.
Cells ; 13(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38786060

RESUMEN

Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy-lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance.


Asunto(s)
Antioxidantes , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno , Humanos , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Línea Celular Tumoral , Antioxidantes/metabolismo , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Cisplatino/farmacología , Femenino , Proteínas de la Membrana/metabolismo , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide , Ratones , Piruvato Quinasa/metabolismo , Glucólisis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteínas Portadoras/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/enzimología
15.
Front Vet Sci ; 11: 1333975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440384

RESUMEN

Background: Deer tuberculosis is a chronic zoonotic infectious disease, despite the existence of socio-economic and zoonotic risk factors, but at present, there has been no systematic review of deer tuberculosis prevalence in mainland China. The aim of this meta-analysis was to estimate the overall prevalence of deer TB in mainland China and to assess possible associations between potential risk factors and the prevalence of deer tuberculosis. Methodology: This study was searched in six databases in Chinese and English, respectively (1981 to December 2023). Four authors independently reviewed the titles and abstracts of all retrieved articles to establish the inclusion exclusion criteria. Using the meta-analysis package estimated the combined effects. Cochran's Q-statistic was used to analyze heterogeneity. Funnel plots (symmetry) and used the Egger's test identifying publication bias. Trim-and-fill analysis methods were used for validation and sensitivity analysis. we also performed subgroup and meta-regression analyses. Results: In this study, we obtained 4,400 studies, 20 cross-sectional studies were screened and conducted a systematic review and meta-analysis. Results show: The overall prevalence of tuberculosis in deer in mainland China was 16.1% (95% confidence interval (CI):10.5 24.6; (Deer tuberculosis infected 5,367 out of 22,215 deer in mainland China) 5,367/22215; 1981 to 2023). The prevalence in Central China was the highest 17.5% (95% CI:14.0-21.9; 63/362), and among provinces, the prevalence in Heilongjiang was the highest at 26.5% (95% CI:13.2-53.0; 1557/4291). Elaphurus davidianus was the most commonly infected species, with a prevalence of 35.3% (95% CI:18.5-67.2; 6/17). We also assessed the association between geographic risk factors and the incidence of deer tuberculosis. Conclusion: Deer tuberculosis is still present in some areas of China. Assessing the association between risk factors and the prevalence of deer tuberculosis showed that reasonable and scientific-based breeding methods, a suitable breeding environment, and rapid and accurate detection methods could effectively reduce the prevalence of deer tuberculosis. In addition, in the management and operation of the breeding base, improving the scientific feed nutrition standards and establishing comprehensive standards for disease prevention, immunization, quarantine, treatment, and disinfection according to the breeding varieties and scale, are suggested as ways to reduce the prevalence of deer tuberculosis.

16.
RSC Adv ; 13(37): 25853-25861, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37655351

RESUMEN

Metal organic complexes are regarded as a series of promising combustion catalysts for solid rocket propellants. Their effects on the combustion performance of propellants are closely related to the reaction mechanism. Here, the metal-organic complex Cu(Salen) was investigated as a candidate material for the combustion catalyst of the HMX-added composite modified double-base propellant (HMX-CMDB). The combustion performance of the propellant was found to be evidently enhanced in the presence of Cu(Salen) compared with the propellant samples containing Benzoic-Cu or without catalyst. The addition of Cu(Salen) can improve the burning rate and combustion efficiency of the propellant - and greatly reduce the burning rate pressure index. Analysis shows that the addition of Cu(Salen) can increase the combustion area, flame brightness and combustion surface uniformity of the propellant to a higher degree. The sample can spray more beams of bright filaments on the flat combustion section, and the amount of gas generated by decomposition also greatly increases. In addition, Cu(Salen) shows amazing advantages in improving the surface of the propellant and the temperature gradient of the combustion flame.

17.
J Colloid Interface Sci ; 634: 1014-1023, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36577254

RESUMEN

Template is frequently studied as a structure-directing agent to tune the nanomorphology of photocatalysts. However, the influences of template on the polymerization of precursors and compositions of the resulting samples are rarely considered. Herein, a biomass carbon-modified graphitic carbon nitride (CCNx) with a thin-layer morphology is synthesized via one-pot surface-assisted polymerization of melamine precursor on organic yeast. The formation of the hydrogen bond between melamine and yeast induces a strong interfacial confinement, giving rise to small-sized CCNx. In addition, the carbon materials derived from yeast dramatically broaden n â†’ π* visible light harvesting, improve electron delocalization, and greatly enhance charge carrier separation. The optimized CCNx presents a much higher photocatalytic hydrogen production rate of 2704 µmol g-1h-1 under visible light irradiation (λ ≥ 420 nm), which is nearly 11-fold that of its pristine counterpart. This work realizes the synergistic effect between morphology tunning and composition tailoring by using biomass template, which shows a great potential in developing efficient metal-free photocatalysts.


Asunto(s)
Hidrógeno , Saccharomyces cerevisiae , Biomasa , Carbono , Luz , Polímeros
18.
Nat Genet ; 55(9): 1579-1588, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37640880

RESUMEN

Potato (Solanum tuberosum) and tomato (Solanum lycopersicon) crops suffer severe losses to late blight caused by the oomycete pathogen Phytophthora infestans. Solanum americanum, a relative of potato and tomato, is globally distributed and most accessions are highly blight resistant. We generated high-quality reference genomes of four S. americanum accessions, resequenced 52 accessions, and defined a pan-NLRome of S. americanum immune receptor genes. We further screened for variation in recognition of 315P. infestans RXLR effectors in 52 S. americanum accessions. Using these genomic and phenotypic data, we cloned three NLR-encoding genes, Rpi-amr4, R02860 and R04373, that recognize cognate P. infestans RXLR effectors PITG_22825 (AVRamr4), PITG_02860 and PITG_04373. These genomic resources and methodologies will support efforts to engineer potatoes with durable late blight resistance and can be applied to diseases of other crops.


Asunto(s)
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Solanum/genética , Solanum tuberosum/genética , Phytophthora infestans/genética , Solanum lycopersicum/genética , Genómica , Productos Agrícolas
19.
Zhongguo Zhong Yao Za Zhi ; 37(9): 1307-10, 2012 May.
Artículo en Zh | MEDLINE | ID: mdl-22803381

RESUMEN

OBJECTIVE: To observe the effect of Pingxian granules on the protein expression of apoptosis regulatory genes Bcl-2 and Bax in the hippocampus of epileptic model rats and study the molecular biological mechanism of the anti-epileptic effect of Pingxian granules. METHOD: Totally 60 45-days-old Wistar rats were selected and then randomly assigned into 5 groups: the normal control group, the model group, the positive control group, the Pingxian high dose group and the Pingxian low dose group, with 12 in each group. Except the normal control group, all the groups were intraperitoneally injected with 35 mg x kg(-1) pentylenetetrazol to establish the models of epilepsy. The Pingxian high dose (1.66 g x mL(-1)) and low dose (0.42 g x mL(-1)) groups were intragastrically infused with Pingxian granules 2 mL x d(-1). The positive control group received 3.6 g x L(-1) phenobarbital suspension by gastric perfusion. The normal group and the model group were drenched with distilled water, 2 mL x d(-1), for 5 weeks. Bcl-2 and Bax protein positive cells were labeled with immunohistochemical SABC at 3, 5 w. RESULT: (1) Rats in the model group appeared the epileptic behavior at the 1st week, and became serious with the kindle frequency; grade VIepileptic behavior appeared at the 4th week. The attack frequency and grade of the Pingxian group were less and lower, the highest grade were only IV, and there were no significant differences in the attack grade and frequency. (2) With the increase in kindle frequency, the model group showed a notable decrease in the Bcl-2 expression compared with the normal control group at the 3rd and 5th weekend (P < 0.01), but a significant increase in Bax protein expression (P <0. 01). The number of the Bcl-2 protein expression in Pingxian groups and the positive control group were obviously more than the model group (P < 0.01); and the number of the Bax protein expression in Pingxian groups and the positive control group were obviously less than the model group (P < 0.01). CONCLUSION: Pingxian granules may decrease neuronal cell apoptosis by improving the protein expression of apoptosis regulatory gene Bcl-2 and inhibiting the protein expression of apoptosis regulatory gene Bax with a view of anti-epilepsy.


Asunto(s)
Apoptosis/efectos de los fármacos , Medicamentos Herbarios Chinos/uso terapéutico , Epilepsia/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Pentilenotetrazol/toxicidad , Animales , Epilepsia/inducido químicamente , Femenino , Inmunohistoquímica , Masculino , Ratas , Ratas Wistar
20.
Chin Herb Med ; 14(2): 294-302, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35382000

RESUMEN

Objective: Network pharmacology combines drug and disease targets with biological information networks based on the integrity and systematicness of the interactions between drugs and disease targets. This study aims to explore the molecular basis of Hanshi Zufei formula for treatment of COVID-19 based on network pharmacology and molecular docking techniques. Methods: Using TCMSP, the chemical constituents and molecular targets of Atractylodis Rhizoma, Citri Reticulatae Pericarpium, Magnoliae Officinalis Cortex, Pogostemonis Herba, Tsaoko Fructus, Ephedrae Herba, Notopterygii Rhizoma et Radix, Zingiberis Rhizoma Recens, and Arecae Semen were investigated. The predicted targets of novel coronavirus were screened using the NCBI and GeneCards databases. To further screen the drug-disease core targets network, the corresponding target proteins were queried using multiple databases (Biogrid, DIP, and HPRD), a protein interaction network graph was constructed, and the network topology was analyzed. The molecular docking studies were also performed between the network's top 15 compounds and the coronavirus (SARS-CoV-2) 3CL hydrolytic enzyme and angiotensin conversion enzyme II (ACE2). Results: The herb-active ingredient-target network contained nine drugs, 86 compounds, and 49 drug-disease targets. Gene ontology (GO) enrichment analysis resulted in 1566 GO items (P < 0.05), among which 1438 were biological process items, 35 were cell composition items, and 93 were molecular function items. Fourteen signal pathways were obtained by enrichment screening of the KEGG pathway database (P < 0.05). The molecular docking results showed that the affinity of the core active compounds with the SARS-CoV-2 3CL hydrolase was better than for the other compounds. Conclusion: Several core compounds can regulate multiple signaling pathways by binding with 3CL hydrolase and ACE2, which might contribute to the treatment of COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA