Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Magn Reson Med ; 92(1): 158-172, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38411277

RESUMEN

PURPOSE: Abnormalities in cerebral veins are a common finding in many neurological diseases, yet there is a scarcity of MRI techniques to assess venous hemodynamic function. The present study aims to develop a noncontrast technique to measure a novel blood flow circulatory measure, venous transit time (VTT), which denotes the time it takes for water to travel from capillary to major veins. METHODS: The proposed sequence, venous transit time imaging by changes in T1 relaxation (VICTR), is based on the notion that as water molecules transition from the tissue into the veins, they undergo a change in T1 relaxation time. The validity of the measured VTT was tested by studying the VTT along the anatomically known flow trajectory of venous vessels as well as using a physiological vasoconstrictive challenge of caffeine ingestion. Finally, we compared the VTT measured with VICTR MRI to a bolus-tracking method using gadolinium-based contrast agent. RESULTS: VTT was measured to be 3116.3 ± 326.0 ms in the posterior superior sagittal sinus (SSS), which was significantly longer than 2865.0 ± 390.8 ms at the anterior superior sagittal sinus (p = 0.004). The test-retest assessment showed an interclass correlation coefficient of 0.964. VTT was significantly increased by 513.8 ± 239.3 ms after caffeine ingestion (p < 0.001). VTT measured with VICTR MRI revealed a strong correlation (R = 0.84, p = 0.002) with that measured with the contrast-based approach. VTT was found inversely correlated to cerebral blood flow and venous oxygenation across individuals. CONCLUSION: A noncontrast MRI technique, VICTR MRI, was developed to measure the VTT of the brain.


Asunto(s)
Venas Cerebrales , Imagen por Resonancia Magnética , Humanos , Masculino , Adulto , Femenino , Velocidad del Flujo Sanguíneo/fisiología , Venas Cerebrales/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Circulación Cerebrovascular/fisiología , Reproducibilidad de los Resultados , Cafeína/farmacología , Medios de Contraste , Adulto Joven , Procesamiento de Imagen Asistido por Computador/métodos , Hemodinámica , Angiografía por Resonancia Magnética/métodos
2.
Magn Reson Med ; 92(2): 782-791, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38523598

RESUMEN

PURPOSE: Non-invasive measurement of cerebral venous oxygenation (Yv) is of critical importance in brain diseases. The present work proposed a fast method to quantify regional Yv map for both large and small veins. METHODS: A new sequence was developed, referred to as TRU-VERA (T2 relaxation under velocity encoding and rapid acquisition, which isolates blood spins from static tissue with velocity-encoding preparation, modulates the T2 weighting of venous signal with T2-preparation and utilizes a bSSFP readout to achieve fast acquisition with high resolution. The sequence was first optimized to achieve best sensitivity for both large and small veins, and then validated with TRUST (T2 relaxation under spin tagging), TRUPC (T2 relaxation under phase contrast), and accelerated TRUPC MRI. Regional difference of Yv was evaluated, and test-retest reproducibility was examined. RESULTS: Optimal Venc was determined to be 3 cm/s, while recovery time and balanced SSFP flip angle within reasonable range had minimal effect on SNR efficiency. Venous T2 measured with TRU-VERA was highly correlated with T2 from TRUST (R2 = 0.90), and a conversion equation was established for further calibration to Yv. TRU-VERA sequences showed consistent Yv estimation with TRUPC (R2 = 0.64) and accelerated TRUPC (R2 = 0.79). Coefficient of variation was 0.84% for large veins and 2.49% for small veins, suggesting an excellent test-retest reproducibility. CONCLUSION: The proposed TRU-VERA sequence is a promising method for vessel-specific oxygenation assessment.


Asunto(s)
Venas Cerebrales , Circulación Cerebrovascular , Oxígeno , Humanos , Venas Cerebrales/diagnóstico por imagen , Masculino , Reproducibilidad de los Resultados , Adulto , Femenino , Circulación Cerebrovascular/fisiología , Oxígeno/sangre , Imagen por Resonancia Magnética/métodos , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/irrigación sanguínea , Adulto Joven
3.
Alzheimers Dement ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951718

RESUMEN

INTRODUCTION: Vascular contributions to cognitive impairment and dementia (VCID) represent a major factor in cognitive decline in older adults. The present study examined the relationship between cerebrovascular reactivity (CVR) measured by magnetic resonance imaging (MRI) and cognitive function in a multi-site study, using a predefined hypothesis. METHODS: We conducted the study in a total of three analysis sites and 263 subjects. Each site performed an identical CVR MRI procedure using 5% carbon dioxide inhalation. A global cognitive measure of Montreal Cognitive Assessment (MoCA) and an executive function measure of item response theory (IRT) score were used as outcomes. RESULTS: CVR and MoCA were positively associated, and this relationship was reproduced at all analysis sites. CVR was found to be positively associated with executive function. DISCUSSION: The predefined hypothesis on the association between CVR and a global cognitive score was validated in three independent analysis sites, providing support for CVR as a biomarker in VCID. HIGHLIGHTS: This study measured a novel functional index of small arteries referred to as cerebrovascular reactivity (CVR). CVR was positively associated with global cognition in older adults. This finding was observed in three independent cohorts at three sites. Our statistical analysis plan was predefined before beginning data collection.

4.
Neuroimage ; 266: 119829, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36565971

RESUMEN

The medial temporal lobe (MTL) is a key area implicated in many brain diseases, such as Alzheimer's disease. As a functional biomarker, the oxygen extraction fraction (OEF) of MTL may be more sensitive than structural atrophy of MTL, especially at the early stages of diseases. However, there is a lack of non-invasive techniques to measure MTL-OEF in humans. The goal of this work is to develop an MRI technique to assess MTL-OEF in a clinically practical time without using contrast agents. The proposed method measures venous oxygenation (Yv) in the basal veins of Rosenthal (BVs), which are the major draining veins of the MTL. MTL-OEF can then be estimated as the arterio-venous difference in oxygenation. We developed an MRI sequence, dubbed arterial-suppressed accelerated T2-relaxation-under-phase-contrast (AS-aTRUPC), to quantify the blood T2 of the BVs, which was then converted to Yv through a well-established calibration model. MTL-OEF was calculated as (Ya-Yv)/Ya × 100%, where Ya was the arterial oxygenation. The feasibility of AS-aTRUPC to quantify MTL-OEF was evaluated in 16 healthy adults. The sensitivity of AS-aTRUPC in detecting OEF changes was assessed by a caffeine ingestion (200 mg) challenge. For comparison, T2-relaxation-under-spin-tagging (TRUST) MRI, which is a widely used global OEF technique, was also acquired. The dependence of MTL-OEF on age was examined by including another seven healthy elderly subjects. The results showed that in healthy adults, MTL-OEF of the left and right hemispheres were correlated (P=0.005). MTL-OEF was measured to be 23.9±3.6% (mean±standard deviation) and was significantly lower (P<0.0001) than the OEF of 33.3±2.9% measured in superior sagittal sinus (SSS). After caffeine ingestion, there was an absolute percentage increase of 9.1±4.0% in MTL-OEF. Additionally, OEF in SSS measured with AS-aTRUPC showed a strong correlation with TRUST OEF (intra-class correlation coefficient=0.94 with 95% confidence interval [0.91, 0.96]), with no significant bias (P=0.12). MTL-OEF was found to increase with age (MTL-OEF=20.997+0.100 × age; P=0.02). In conclusion, AS-aTRUPC MRI provides non-invasive assessments of MTL-OEF and may facilitate future clinical applications of MTL-OEF as a disease biomarker.


Asunto(s)
Venas Cerebrales , Oxígeno , Adulto , Humanos , Anciano , Cafeína , Encéfalo/irrigación sanguínea , Imagen por Resonancia Magnética/métodos , Venas Cerebrales/diagnóstico por imagen , Consumo de Oxígeno , Circulación Cerebrovascular
5.
Magn Reson Med ; 90(6): 2411-2419, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37582262

RESUMEN

PURPOSE: To quantify the T1 and T2 values of CSF in the subarachnoid space (SAS) at 3 T and interpret them in the context of water exchange between CSF and brain tissues. METHODS: CSF T1 was measured using inversion recovery, and CSF T2 was assessed using T2 -preparation. T1 and T2 values in the SAS were compared with those in the frontal horns of lateral ventricles, which have less brain-CSF exchange. Phantom experiments were performed to examine whether there were spatial variations in T1 and T2 that were unrelated to brain-CSF exchange. Simulations were conducted to investigate the relationship between the brain-CSF exchange rate and the apparent T1 and T2 values of SAS CSF. RESULTS: The CSF T1 and T2 values were 4308.7 ± 146.9 ms and 1885.5 ± 67.9 ms, respectively, in the SAS and were 4454.0 ± 187.9 ms and 2372.9 ± 72.0 ms in the frontal horns. The SAS CSF had shorter T1 (p = 0.006) and T2 (p < 0.0001) than CSF in the frontal horns. Phantom experiments showed negligible (< 6 ms for T1 ; < 1 ms for T2 ) spatial variations in T1 and T2 , suggesting that the T1 and T2 differences between SAS and frontal horns were largely attributed to physiological reasons. Simulations revealed that faster brain-CSF exchange rates lead to shorter apparent T1 and T2 of SAS CSF. However, the experimentally observed T2 difference between SAS and frontal horns was greater than that attributable to typical exchange effect, suggesting that the T2 shortening in SAS may reflect a combined effect of exchange and deoxyhemoglobin susceptibility. CONCLUSION: Quantification of SAS CSF relaxation times may be useful to assess the brain-CSF exchange.


Asunto(s)
Encéfalo , Espacio Subaracnoideo , Animales , Encéfalo/diagnóstico por imagen , Espacio Subaracnoideo/diagnóstico por imagen , Factores de Tiempo , Fantasmas de Imagen , Imagen por Resonancia Magnética
6.
NMR Biomed ; 36(10): e4990, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37315951

RESUMEN

Cerebral venous oxygenation (Yv ) is a valuable biomarker for a variety of brain diseases. T2 relaxation under spin tagging (TRUST) MRI is a widely used method for Yv quantification. In this work, there were two main objectives. The first was to evaluate the reproducibility of TRUST Yv measurements across MRI scanners from different vendors. The second was to examine the correlation between Yv and end-tidal CO2 (EtCO2 ) in a multisite, multivendor setting and determine the usefulness of this correlation to account for variations in Yv caused by normal variations and physiological fluctuations. Standardized TRUST pulse sequences were implemented on three scanners from major MRI vendors (GE, Siemens, Philips). These scanners were located at two research institutions. Ten healthy subjects were scanned. On each scanner, the subject underwent two scan sessions, each of which included three TRUST scans, to evaluate the intrasession and intersession reproducibility of Yv . Each scanner was also equipped with a capnograph device to record the EtCO2 of the subject during the MRI scan. We found no significant bias in Yv measurements across the three scanners (P = 0.18). The measured Yv values on the three scanners were also strongly correlated with each other (intraclass correlation coefficients > 0.85, P < 0.001). The intrasession and intersession coefficients of variation of Yv were less than 4% and showed no significant difference among the scanners. In addition, our results revealed that (1) within the same subject, Yv increased with EtCO2 at a rate of 1.24 ± 0.17%/mmHg (P < 0.0001), and (2) across different subjects, individuals with a higher EtCO2 had a higher Yv , at a rate of 0.94 ± 0.36%/mmHg (P = 0.01). These results suggest that (1) the standardized TRUST sequences had similar accuracies and reproducibilities for the quantification of Yv across the scanners, and (2) recording of EtCO2 may be a useful complement to Yv measurement to account for CO2 -related physiological fluctuations in Yv in multisite, multivendor studies.


Asunto(s)
Encefalopatías , Dióxido de Carbono , Humanos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Voluntarios Sanos , Encéfalo/diagnóstico por imagen
7.
Alzheimers Dement ; 19(2): 569-577, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35791732

RESUMEN

INTRODUCTION: Oxygen extraction fraction (OEF) reflects the balance between oxygen delivery and consumption. We longitudinally measured OEF in older adults to examine the relationship with markers of Alzheimer's disease (AD) and vascular pathology. METHODS: One hundred thirty-seven participants were studied at two time-points at an interval of 2.16 years. OEF was measured using T2 -relaxation-under-spin-tagging (TRUST) magnetic resonance imaging (MRI). The association between OEF and vascular risks, white matter hyperintensities (WMH), cerebrospinal fluid (CSF) measures of amyloid beta (Aß), total tau (t-tau), and phosphorylated tau 181 (p-tau181) was examined. RESULTS: OEF increased from baseline to follow-up. The increase in OEF was more prominent in individuals with high vascular risks compared to those with low vascular risks, and was associated with progression of vascular risks and the growth in WMH volume. OEF change was not related to CSF markers of AD pathology or their progression. DISCUSSION: Longitudinal OEF change in older adults is primarily related to vascular pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Oxígeno , Disfunción Cognitiva/patología , Encéfalo/patología , Proteínas tau/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo
8.
Magn Reson Med ; 88(2): 575-600, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35510696

RESUMEN

The human brain constitutes 2% of the body's total mass but uses 20% of the oxygen. The rate of the brain's oxygen utilization can be derived from a knowledge of cerebral blood flow and the oxygen extraction fraction (OEF). Therefore, OEF is a key physiological parameter of the brain's function and metabolism. OEF has been suggested to be a useful biomarker in a number of brain diseases. With recent advances in MRI techniques, several MRI-based methods have been developed to measure OEF in the human brain. These MRI OEF techniques are based on the T2 of blood, the blood signal phase, the magnetic susceptibility of blood-containing voxels, the effect of deoxyhemoglobin on signal behavior in extravascular tissue, and the calibration of the BOLD signal using gas inhalation. Compared to 15 O PET, which is considered the "gold standard" for OEF measurement, MRI-based techniques are non-invasive, radiation-free, and are more widely available. This article provides a review of these emerging MRI-based OEF techniques. We first briefly introduce the role of OEF in brain oxygen homeostasis. We then review the methodological aspects of different categories of MRI OEF techniques, including their signal mechanisms, acquisition methods, and data analyses. The strengths and limitations of the techniques are discussed. Finally, we review key applications of these techniques in physiological and pathological conditions.


Asunto(s)
Consumo de Oxígeno , Oxígeno , Encéfalo/metabolismo , Circulación Cerebrovascular/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Consumo de Oxígeno/fisiología
9.
Magn Reson Med ; 88(5): 2259-2266, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35754146

RESUMEN

PURPOSE: Caffeine is known to alter brain perfusion by acting as an adenosine antagonist, but its effect on blood-brain barrier (BBB) permeability is not fully elucidated. This study aimed to dynamically monitor BBB permeability to water after a single dose of caffeine tablet using a non-contrast MRI technique. METHODS: Ten young healthy volunteers who were not regular coffee drinkers were studied. The experiment began with a pre-caffeine measurement, followed by four measurements at the post-caffeine stage. Water-extraction-with-phase-contrast-arterial-spin-tagging (WEPCAST) MRI was used to assess the time dependence of BBB permeability to water following the ingestion of 200 mg caffeine. Other cerebral physiological parameters including cerebral blood flow (CBF), venous oxygenation (Yv ), and cerebral metabolic rate of oxygen (CMRO2 ) were also examined. The relationships between cerebral physiological parameters and time were studied with mixed-effect models. RESULTS: It was found that, after caffeine ingestion, CBF and Yv showed a time-dependent decrease (p < 0.001), while CMRO2 did not change significantly. The fraction of arterial water crossing the BBB (E) showed a significant increase (p < 0.001). In contrast, the permeability-surface-area product (PS), i.e., BBB permeability to water, remained constant (p = 0.94). Additionally, it was observed that changes in physiological parameters were non-linear with regard to time and occurred at as early as 9 min after caffeine tablet ingestion. CONCLUSION: These results suggest an unchanged BBB permeability despite alterations in perfusion during a vasoconstrictive caffeine challenge.


Asunto(s)
Barrera Hematoencefálica , Cafeína , Barrera Hematoencefálica/diagnóstico por imagen , Barrera Hematoencefálica/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/diagnóstico por imagen , Cafeína/farmacología , Circulación Cerebrovascular/fisiología , Humanos , Imagen por Resonancia Magnética/métodos , Permeabilidad , Agua/metabolismo
10.
Ann Neurol ; 90(2): 227-238, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34041783

RESUMEN

OBJECTIVE: Blood-brain barrier (BBB) breakdown has been suggested to be an early biomarker in human cognitive impairment. However, the relationship between BBB breakdown and brain pathology, most commonly Alzheimer disease (AD) and vascular disease, is still poorly understood. The present study measured human BBB function in mild cognitive impairment (MCI) patients on 2 molecular scales, specifically BBB's permeability to water and albumin molecules. METHODS: Fifty-five elderly participants were enrolled, including 33 MCI patients and 22 controls. BBB permeability to water was measured with a new magnetic resonance imaging technique, water extraction with phase contrast arterial spin tagging. BBB permeability to albumin was determined using cerebrospinal fluid (CSF)/serum albumin ratio. Cognitive performance was assessed by domain-specific composite scores. AD pathology (including CSF Aß and ptau) and vascular risk factors were examined. RESULTS: Compared to cognitively normal subjects, BBB in MCI patients manifested an increased permeability to small molecules such as water but was no more permeable to large molecules such as albumin. BBB permeability to water was found to be related to AD markers of CSF Aß and ptau. On the other hand, BBB permeability to albumin was found to be related to vascular risk factors, especially hypercholesterolemia, but was not related to AD pathology. BBB permeability to small molecules, but not to large molecules, was found to be predictive of cognitive function. INTERPRETATION: These findings provide early evidence that BBB breakdown is related to both AD and vascular risks, but their effects can be differentiated by spatial scales. BBB permeability to small molecules has a greater impact on cognitive performance. ANN NEUROL 2021;90:227-238.


Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar/fisiología , Disfunción Cognitiva/líquido cefalorraquídeo , Enfermedades Vasculares/líquido cefalorraquídeo , Anciano , Enfermedad de Alzheimer/diagnóstico por imagen , Péptidos beta-Amiloides/líquido cefalorraquídeo , Barrera Hematoencefálica/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/líquido cefalorraquídeo , Albúmina Sérica Humana/líquido cefalorraquídeo , Enfermedades Vasculares/diagnóstico por imagen , Proteínas tau/líquido cefalorraquídeo
11.
Neuroimage ; 245: 118754, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34826595

RESUMEN

Cerebrovascular reactivity (CVR), which measures the ability of cerebral blood vessels to dilate or constrict in response to vasoactive stimuli such as CO2 inhalation, is an important index of the brain's vascular health. Quantification of CVR using BOLD MRI with hypercapnia challenge has shown great promises in research and clinical studies. However, in order for it to be used as a potential imaging biomarker in large-scale and multi-site studies, the reliability of CO2-CVR quantification across different MRI acquisition platforms and researchers/raters must be examined. The goal of this report from the MarkVCID small vessel disease biomarkers consortium is to evaluate the reliability of CO2-CVR quantification in three studies. First, the inter-rater reliability of CO2-CVR data processing was evaluated by having raters from 5 MarkVCID sites process the same 30 CVR datasets using a cloud-based CVR data processing pipeline. Second, the inter-scanner reproducibility of CO2-CVR quantification was assessed in 10 young subjects across two scanners of different vendors. Third, test-retest repeatability was evaluated in 20 elderly subjects from 4 sites with a scan interval of less than 2 weeks. In all studies, the CO2 CVR measurements were performed using the fixed inspiration method, where the subjects wore a nose clip and a mouthpiece and breathed room air and 5% CO2 air contained in a Douglas bag alternatively through their mouth. The results showed that the inter-rater CoV of CVR processing was 0.08 ± 0.08% for whole-brain CVR values and ranged from 0.16% to 0.88% in major brain regions, with ICC of absolute agreement above 0.9959 for all brain regions. Inter-scanner CoV was found to be 6.90 ± 5.08% for whole-brain CVR values, and ranged from 4.69% to 12.71% in major brain regions, which are comparable to intra-session CoVs obtained from the same scanners on the same day. ICC of consistency between the two scanners was 0.8498 for whole-brain CVR and ranged from 0.8052 to 0.9185 across major brain regions. In the test-retest evaluation, test-retest CoV across different days was found to be 18.29 ± 17.12% for whole-brain CVR values, and ranged from 16.58% to 19.52% in major brain regions, with ICC of absolute agreement ranged from 0.6480 to 0.7785. These results demonstrated good inter-rater, inter-scanner, and test-retest reliability in healthy volunteers, and suggested that CO2-CVR has suitable instrumental properties for use as an imaging biomarker of cerebrovascular function in multi-site and longitudinal observational studies and clinical trials.


Asunto(s)
Circulación Cerebrovascular , Hipercapnia/diagnóstico por imagen , Administración por Inhalación , Anciano , Envejecimiento , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Dióxido de Carbono/farmacología , Femenino , Voluntarios Sanos , Humanos , Hipercapnia/metabolismo , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Adulto Joven
12.
Magn Reson Med ; 86(3): 1445-1453, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33755253

RESUMEN

PURPOSE: To validate two neonatal cerebral venous oxygenation (Yv ) MRI techniques, T2 relaxation under phase contrast (TRUPC) and accelerated TRUPC (aTRUPC) MRI, with oxygenation measured with direct blood sampling. METHODS: In vivo experiments were performed on seven healthy newborn piglets. For each piglet, a catheter was placed in the superior sagittal sinus to obtain venous blood samples for blood gas oximetry measurement as a gold standard. During the MRI experiment, three to five venous oxygenation levels were achieved in each piglet by varying inhaled O2 content and breathing rate. Under each condition, Yv values of the superior sagittal sinus measured by TRUPC, aTRUPC, and blood gas oximetry were obtained. The Yv quantification in TRUPC and aTRUPC used a standard bovine blood calibration model. The aTRUPC scan was repeated twice to assess its reproducibility. Agreements among TRUPC Yv , aTRUPC Yv , and blood gas oximetry were evaluated by intraclass correlation coefficient (ICC) and paired Student's t-test. RESULTS: The mean hematocrit was 23.6 ± 6.5% among the piglets. Across all measurements, Yv values were 51.9 ± 21.3%, 54.1 ± 18.8%, and 53.7 ± 19.2% for blood gas oximetry, TRUPC and aTRUPC, respectively, showing no significant difference between any two methods (P > .3). There were good correlations between TRUPC and blood gas Yv (ICC = 0.801; P < .0001), between aTRUPC and blood gas Yv (ICC = 0.809; P < .0001), and between aTRUPC and TRUPC Yv (ICC = 0.887; P < .0001). The coefficient of variation of aTRUPC Yv was 8.1 ± 9.9%. CONCLUSION: The values of Yv measured by TRUPC and aTRUPC were in good agreement with blood gas oximetry. These findings suggest that TRUPC and aTRUPC can provide accurate quantifications of Yv in major cerebral veins.


Asunto(s)
Venas Cerebrales , Animales , Encéfalo , Bovinos , Circulación Cerebrovascular , Humanos , Imagen por Resonancia Magnética , Oximetría , Oxígeno , Reproducibilidad de los Resultados , Porcinos
13.
Magn Reson Med ; 86(4): 1917-1928, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33977546

RESUMEN

PURPOSE: The ability to measure cerebral vascular compliance (VC) is important in the evaluation of vascular diseases. Additionally, quantification of arterial wall pulsation in the brain may be useful for understanding the driving force of the recently discovered glymphatic system. Our goal is to develop an MRI technique to measure VC and arterial wall pulsation in major intracranial vessels. METHODS: A total of 17 healthy subjects were studied on a 3T MRI system. The technique, called VaCom-PCASL, uses pseudo-continuous arterial spin labeling (PCASL) to obtain pure blood vessel signal, uses a 3D radial acquisition, and applies a golden-angle radial sparse parallel (GRASP) algorithm for image reconstruction. The k-space data were retrospectively sorted into different cardiac phases. The GRASP algorithm allows the reconstruction of 5D (three spatial dimensions, one control/label dimension, and one cardiac-phase dimension) data simultaneously. The proposed technique was optimized in terms of reconstruction parameters and labeling duration. Intracranial VC was compared with aortic pulse wave velocity measured with phase-contrast MRI. Age differences in VC were studied. RESULTS: The VaCom-PCASL technique using 10 cardiac phases and GRASP sparsity constraints of λlabel/control = 0.05 and λcardiac = 0.05 provided the highest contrast-to-noise ratio. A labeling duration of 800 ms was found to yield signals comparable to those of longer duration (P > .2), whereas 400 ms yielded significant overestimation (P < .005). A significant correlation was observed between intracranial VC and aortic pulse wave velocity (r = -0.73, P = .038, N = 8). Vascular compliance in the older group was lower than that in the younger group. CONCLUSION: The VaCom-PCASL-MRI technique represents a promising approach for noninvasive assessment of arterial stiffness and pulsatility.


Asunto(s)
Circulación Cerebrovascular , Análisis de la Onda del Pulso , Encéfalo , Humanos , Imagenología Tridimensional , Estudios Retrospectivos , Marcadores de Spin
14.
Magn Reson Med ; 86(1): 143-156, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33559214

RESUMEN

PURPOSE: Assessment of the blood-brain barrier (BBB) permeability without the need for contrast agent is desirable, and the ability to measure the permeability to small molecules such as water may further increase the sensitivity in detecting diseases. This study proposed a time-efficient, noncontrast method to measure BBB permeability to water, evaluated its test-retest reproducibility, and compared it with a contrast agent-based method. METHODS: A single-delay water extraction with phase-contrast arterial spin tagging (WEPCAST) method was devised in which spatial profile of the signal along the superior sagittal sinus was used to estimate bolus arrival time, and the WEPCAST signal at the corresponding location was used to compute water extraction fraction, which was combined with global cerebral blood flow to estimate BBB permeability surface area product to water. The reliability of WEPCAST sequence was examined in terms of intrasession, intersession, and inter-vendor (Philips [Ingenia, Best, the Netherlands] and Siemens [Prisma, Erlangen, Germany]) reproducibility. Finally, we compared this new technique to a contrast agent-based method. RESULTS: Single-delay WEPCAST reduced the scan duration from approximately 20 min to 5 min. Extract fraction values estimated from single-delay WEPCAST showed good consistency with the multi-delay method (R = 0.82, P = .004). Group-averaged permeability surface area product values were found to be 137.5 ± 9.3 mL/100 g/min. Intrasession, intersession, and inter-vendor coefficient of variation of the permeability surface area product values were 6.6 ± 4.5%, 6.9 ± 3.7%, and 8.9 ± 3.0%, respectively. Finally, permeability surface area product obtained from WEPCAST MRI showed a significant correlation with that from the contrast-based method (R = .73, P = .02). CONCLUSION: Single-delay WEPCAST MRI can measure BBB permeability to water within 5 min with an intrasession, intersession, and inter-vendor test-retest reproducibility of 6% to 9%. This method may provide a useful marker of BBB breakdown in clinical studies.


Asunto(s)
Barrera Hematoencefálica , Agua , Barrera Hematoencefálica/diagnóstico por imagen , Alemania , Imagen por Resonancia Magnética , Países Bajos , Permeabilidad , Reproducibilidad de los Resultados , Agua/análisis
15.
Magn Reson Med ; 85(1): 290-297, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32643207

RESUMEN

PURPOSE: To evaluate the accuracy of T2 -based whole-brain oxygen extraction fraction (OEF) estimation by comparing it with gold standard 15 O-PET measurements. METHODS: Sixteen healthy adult subjects underwent MRI and 15 O-PET OEF measurements on the same day. On MRI, whole-brain OEF was quantified by T2 -relaxation-under-spin-tagging (TRUST) MRI, based on subject-specific hematocrit. The TRUST OEF was compared to the whole-brain averaged OEF produced by 15 O-PET. Agreement between TRUST and 15 O-PET whole-brain OEF measurements was examined in terms of intraclass correlation coefficient (ICC) and in absolute OEF values. In a subset of 10 subjects, test-retest reproducibility of whole-brain OEF was also evaluated and compared between the two modalities. RESULTS: Across the 16 subjects, the mean whole-brain OEF of TRUST and 15 O-PET were 36.44 ± 4.07% and 36.45 ± 3.65%, respectively, showing no difference between the two modalities (P = .99). TRUST whole-brain OEF strongly correlated with that of 15 O-PET (N = 16, ICC = 0.90, P = 4 × 10-7 ). The coefficient-of-variation of TRUST and 15 O-PET whole-brain OEF measurements were 1.79 ± 0.67% and 2.06 ± 1.55%, respectively, showing no difference between the two modalities (N = 10, P = .64). Further analyses on the effect of hematocrit revealed that correlation between PET OEF and TRUST OEF with assumed hematocrit remained significant (ICC = 0.8, P < 2 × 10-5 ). CONCLUSION: Whole-brain OEF measured by TRUST was in excellent agreement with gold standard 15 O-PET, with highly comparable accuracy and reproducibility. These findings suggest that TRUST MRI can provide accurate quantification of whole-brain OEF noninvasively.


Asunto(s)
Circulación Cerebrovascular , Tomografía de Emisión de Positrones , Adulto , Encéfalo/diagnóstico por imagen , Humanos , Oxígeno , Consumo de Oxígeno , Reproducibilidad de los Resultados
16.
J Magn Reson Imaging ; 54(4): 1053-1065, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33955613

RESUMEN

BACKGROUND: Disruption of brain oxygen delivery and consumption after hypoxic-ischemic injury contributes to neonatal mortality and neurological impairment. Measuring cerebral hemodynamic parameters, including cerebral blood flow (CBF), oxygen extraction fraction (OEF), and cerebral metabolic rate of oxygen (CMRO2 ), is clinically important. PURPOSE: Phase-contrast (PC), velocity-selective arterial spin labeling (VSASL), and T2 -relaxation-under-phase-contrast (TRUPC) are magnetic resonance imaging (MRI) techniques that have shown promising results in assessing cerebral hemodynamics in humans. We aimed to test their feasibility in quantifying CBF, OEF, and CMRO2 in piglets. STUDY TYPE: Prospective. ANIMAL MODEL: Ten neonatal piglets subacutely recovered from global hypoxia-ischemia (N = 2), excitotoxic brain injury (N = 6), or sham procedure (N = 2). FIELD STRENGTH/SEQUENCE: VSASL, TRUPC, and PC MRI acquired at 3.0 T. ASSESSMENT: Regional CBF was measured by VSASL. Global CBF was quantified by both PC and VSASL. TRUPC assessed OEF at the superior sagittal sinus (SSS) and internal cerebral veins (ICVs). CMRO2 was calculated from global CBF and SSS-derived OEF. End-tidal carbon dioxide (EtCO2 ) levels of the piglets were also measured. Brain damage was assessed in tissue sections postmortem by counting damaged neurons. STATISTICAL TESTS: Spearman correlations were performed to evaluate associations among CBF (by PC or VSASL), OEF, CMRO2 , EtCO2 , and the pathological neuron counts. Paired t-test was used to compare OEF at SSS with OEF at ICV. RESULTS: Global CBF was 32.1 ± 14.9 mL/100 g/minute and 30.9 ± 8.3 mL/100 g/minute for PC and VSASL, respectively, showing a significant correlation (r = 0.82, P < 0.05). OEF was 54.9 ± 8.8% at SSS and 46.1 ± 5.6% at ICV, showing a significant difference (P < 0.05). Global CMRO2 was 79.1 ± 26.2 µmol/100 g/minute and 77.2 ± 12.2 µmol/100 g/minute using PC and VSASL-derived CBF, respectively. EtCO2 correlated positively with PC-based CBF (r = 0.81, P < 0.05) but negatively with OEF at SSS (r = -0.84, P < 0.05). Relative CBF of subcortical brain regions and OEF at ICV did not significantly correlate, respectively, with the ratios of degenerating-to-total neurons (P = 0.30, P = 0.10). DATA CONCLUSION: Non-contrast MRI can quantify cerebral hemodynamic parameters in normal and brain-injured neonatal piglets. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Circulación Cerebrovascular , Consumo de Oxígeno , Animales , Encéfalo/diagnóstico por imagen , Hemodinámica , Humanos , Imagen por Resonancia Magnética , Oxígeno , Estudios Prospectivos , Porcinos
17.
Neuroimage ; 207: 116365, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31734432

RESUMEN

Cerebrovascular reactivity (CVR) mapping using CO2-inhalation can provide important insight into vascular health. At present, blood-oxygenation-level-dependent (BOLD) MRI acquisition is the most commonly used CVR method due to its high sensitivity, high spatial resolution, and relatively straightforward processing. However, large variations in CVR across subjects and across different sessions of the same subject are often observed, which can cloud the ability of this promising measure in detecting diseases or monitoring treatment responses. The present work aims to identify the physiological components underlying the observed variability in CVR data. When studying the association between CVR value and the subject's CO2 levels in a total of N = 253 healthy participants, we found that CVR was lower in individuals with a higher basal end-tidal CO2, EtCO2 (slope = -0.0036 ±â€¯0.0008%/mmHg2, p < 0.001), or with a greater EtCO2 change (ΔEtCO2) with hypercapnic condition (slope = -0.0072 ±â€¯0.0018%/mmHg2, p < 0.001). In a within-subject setting, when studying the CVR difference between two repeated scans (with repositioning) in relation to the corresponding differences in basal EtCO2 and ΔEtCO2 (n = 11), it was found that CVR values were lower if the basal EtCO2 or ΔEtCO2 during that particular scan session was greater. The present work suggests that basal physiological state and the level of hypercapnic stimulus intensity should be considered in application studies of CVR in order to reduce inter-subject and intra-subject variations in the data. Potential approaches to use these findings to reduce noise and augment sensitivity are proposed.


Asunto(s)
Encéfalo/fisiopatología , Dióxido de Carbono/metabolismo , Circulación Cerebrovascular/fisiología , Hipercapnia/diagnóstico por imagen , Adulto , Anciano , Encéfalo/fisiología , Mapeo Encefálico/métodos , Femenino , Voluntarios Sanos , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
18.
NMR Biomed ; 33(1): e4202, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31682305

RESUMEN

MR Fingerprinting (MRF)-based Arterial-Spin-Labeling (ASL) has the potential to measure multiple parameters such as cerebral blood flow (CBF), bolus arrival time (BAT), and tissue T1 in a single scan. However, the previous reports have only demonstrated a proof-of-principle of the technique but have not examined the performance of the sequence in the context of key imaging parameters. Furthermore, there has not been a study to directly compare the technique to clinically used perfusion method of dynamic-susceptibility-contrast (DSC) MRI. The present report consists of two studies. In the first study (N = 8), we examined the dependence of MRF-ASL sequence on TR time pattern. Ten different TR patterns with a range of temporal characteristics were examined by both simulations and experiments. The results revealed that there was a significance dependence of the sequence performance on TR pattern (p < 0.001), although there was not a single pattern that provided dramatically improvements. Among the TR patterns tested, a sinusoidal pattern with a period of 125 TRs provided an overall best estimation in terms of spatial consistency. These experimental observations were consistent with those of numerical simulations. In the second study (N = 8), we compared MRF-ASL results with those of DSC MRI. It was found that MRF-ASL and DSC MRI provided highly comparable maps of cerebral blood flow (CBF) and bolus-arrival-time (BAT), with spatial correlation coefficients of 0.79 and 0.91, respectively. However, in terms of quantitative values, BAT obtained with MRF-ASL was considerably lower than that from DSC (p < 0.001), presumably because of the differences in tracer characteristics in terms of diffusible versus intravascular tracers. Test-retest assessment of MRF-ASL MRI revealed that the spatial correlations of parametric maps were 0.997, 0.962, 0.746 and 0.863 for B1+ , T1 , CBF, and BAT, respectively. MRF-ASL is a promising technique for assessing multiple perfusion parameters simultaneously without contrast agent.


Asunto(s)
Medios de Contraste/química , Imagen por Resonancia Magnética , Marcadores de Spin , Adulto , Simulación por Computador , Femenino , Humanos , Cinética , Masculino , Análisis Numérico Asistido por Computador , Reproducibilidad de los Resultados
19.
J Magn Reson Imaging ; 52(4): 1216-1226, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32396711

RESUMEN

BACKGROUND: Diffusion MRI is routinely used to evaluate brain injury in neonatal encephalopathy. Although abnormal mean diffusivity (MD) is often attributed to cytotoxic edema, the specific contribution from neuronal pathology is unclear. PURPOSE: To determine whether MD from high-resolution diffusion tensor imaging (DTI) can detect variable degrees of neuronal degeneration and pathology in piglets with brain injury induced by excitotoxicity or global hypoxia-ischemia (HI) with or without overt infarction. STUDY TYPE: Prospective. ANIMAL MODEL: Excitotoxic brain injury was induced in six neonatal piglets by intrastriatal stereotaxic injection of the glutamate receptor agonist quinolinic acid (QA). Three piglets underwent global HI or a sham procedure. Piglets recovered for 20-96 hours before undergoing MRI (n = 9). FIELD STRENGTH/SEQUENCE: 3.0T MRI with DTI, T1 - and T2 -weighted imaging. ASSESSMENT: MD, fractional anisotropy (FA), and qualitative T2 injury were assessed in the putamen and caudate. The cell bodies of normal neurons, degenerating neurons (excitotoxic necrosis, ischemic necrosis, or necrosis-apoptosis cell death continuum), and injured neurons with equivocal degeneration were counted by histopathology. STATISTICAL TESTS: Spearman correlations were used to compare MD and FA to normal, degenerating, and injured neurons. T2 injury and neuron counts were evaluated by descriptive analysis. RESULTS: The QA insult generated titratable levels of neuronal pathology. In QA, HI, and sham piglets, lower MD correlated with higher ratios of degenerating-to-total neurons (P < 0.05), lower ratios of normal-to-total neurons (P < 0.05), and greater numbers of degenerating neurons (P < 0.05). MD did not correlate with abnormal neurons exhibiting nascent injury (P > 0.99). Neuron counts were not related to FA (P > 0.30) or to qualitative injury from T2 -weighted MRI. DATA CONCLUSION: MD is more accurate than FA for detecting neuronal degeneration and loss during acute recovery from neonatal excitotoxic and HI brain injury. MD does not reliably detect nonfulminant, nascent, and potentially reversible neuronal injury. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2 J. Magn. Reson. Imaging 2020;52:1216-1226.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Animales , Muerte Celular , Neuronas , Proyectos Piloto , Estudios Prospectivos , Porcinos
20.
J Magn Reson Imaging ; 52(6): 1829-1837, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32567195

RESUMEN

BACKGROUND: Alzheimer's disease and vascular cognitive impairment (VCI), as well as their concurrence, represent the most common types of cognitive dysfunction. Treatment strategies for these two conditions are quite different; however, there exists a considerable overlap in their clinical manifestations, and most biomarkers reveal similar abnormalities between these two conditions. PURPOSE: To evaluate the potential of cerebral oxygen extraction fraction (OEF) as a biomarker for differential diagnosis of Alzheimer's disease and VCI. We hypothesized that in Alzheimer's disease OEF will be reduced (decreased oxygen consumption due to decreased neural activity), while in vascular diseases OEF will be elevated (increased oxygen extraction due to abnormally decreased blood flow). STUDY TYPE: Prospective cross-sectional. POPULATION: Sixty-five subjects aged 52-89 years, including 33 mild cognitive impairment (MCI), 7 dementia, and 25 cognitively normal subjects. FIELD STRENGTH/SEQUENCE: 3T T2 -relaxation-under-spin-tagging (TRUST) and fluid-attenuated inversion recovery imaging (FLAIR). ASSESSMENT: OEF, consensus diagnoses of cognitive impairment, vascular risk factors (such as hypertension, hypercholesterolemia, diabetes, smoking, and obesity), cognitive assessments, and cerebrospinal fluid concentration of amyloid and tau were assessed. STATISTICAL TESTS: Multiple linear regression analyses of OEF with diagnostic category (normal, MCI, or dementia), vascular risks, cognitive performance, amyloid and tau pathology. RESULTS: When evaluating the entire group, OEF was found to be lower with more severe cognitive impairment (ß = -2.70 ± 1.15, T = -2.34, P = 0.02), but was higher with greater vascular risk factors (ß = 1.36 ± 0.55, T = 2.48, P = 0.02). Further investigation of the subgroup of participants with low vascular risks (N = 44) revealed that lower OEF was associated with worse cognitive performance (ß = 0.04 ± 0.01, T = 3.27, P = 0.002) and greater amyloid burden (ß = 92.12 ± 41.23, T = 2.23, P = 0.03). Among cognitively impaired individuals (N = 40), higher OEF was associated with greater vascular risk factors (ß = 2.19 ± 0.71, T = 3.08, P = 0.004). DATA CONCLUSION: These findings suggest that OEF is differentially affected by Alzheimer's disease and VCI pathology and may be useful in etiology-based diagnosis of cognitive impairment. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3 J. MAGN. RESON. IMAGING 2020;52:1829-1837.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedades Vasculares , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores , Encéfalo/diagnóstico por imagen , Disfunción Cognitiva/diagnóstico por imagen , Estudios Transversales , Humanos , Persona de Mediana Edad , Oxígeno , Estudios Prospectivos , Enfermedades Vasculares/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA