Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 106(9-10): 3735-3749, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35554627

RESUMEN

The depletion of Bacteroides in the gut is closely correlated with the progression of alcoholic liver disease (ALD). This study aimed to identify Bacteroides strains with protective effects against ALD and evaluate the synergistic effects of Bacteroides and pectin in this disease. Mice were fed Lieber-DeCarli alcohol diet to establish an experimental ALD model and pre-treated with 4 Bacteroides strains. The severity of the liver injury, hepatic steatosis, and inflammation was evaluated through histological and biochemical assays. We found that Bacteroides fragilis ATCC25285 had the best protective effects against ALD strains by alleviating both ethanol-induced liver injury and steatosis. B. fragilis ATCC25285 could counteract inflammatory reactions in ALD by producing short-chain fat acids (SCFAs) and enhancing the intestinal barrier. In the subsequent experiment, the synbiotic combination of B. fragilis ATCC25285 and pectin was evaluated and the underlying mechanisms were investigated by metabolomic and microbiome analyses. The combination elicited superior anti-ALD effects than the individual agents used alone. The synergistic effects of B. fragilis ATCC25285 and pectin were driven by modulating gut microbiota, improving tryptophan metabolism, and regulating intestinal immune function. Based on our findings, the combination of B. fragilis ATCC25285 and pectin can be considered a potential treatment for ALD. KEY POINTS: • B. fragilis ATCC25285 was identified as a protective Bacteroides strain against ALD. • The synbiotic combination of B. fragilis and pectin has better anti-ALD effects. • The synbiotic combination modulates gut microbiota and tryptophan metabolism.


Asunto(s)
Bacteroides , Hepatopatías Alcohólicas , Animales , Etanol/metabolismo , Inflamación/metabolismo , Hígado/metabolismo , Hepatopatías Alcohólicas/patología , Hepatopatías Alcohólicas/prevención & control , Ratones , Ratones Endogámicos C57BL , Pectinas/metabolismo , Triptófano/metabolismo
2.
Appl Microbiol Biotechnol ; 105(4): 1629-1645, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33507355

RESUMEN

The gut microbiota plays an important role in multifaceted physiological functions in the host. Previous studies have assessed the probiotic effects of Lactobacillus salivarius LI01. In this study, we aimed to investigate the potential effects and putative mechanism of L. salivarius LI01 in immune modulation and metabolic regulation through the monocolonization of germ-free (GF) Sprague-Dawley (SD) rats with L. salivarius LI01. The GF rats were separated into two groups and administered a gavage of L. salivarius LI01 or an equal amount of phosphate-buffered saline. The levels of serum biomarkers, such as interleukin (IL)-1α, IL-5, and IL-10, were restored by L. salivarius LI01, which indicated the activation of Th0 cell differentiation toward immune homeostasis. L. salivarius LI01 also stimulated the immune response and metabolic process by altering transcriptional expression in the ileum and liver. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of the 5'-adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, which indicated that L. salivarius LI01 exerts an effect on energy accumulation. The LI01 group showed alterations in fecal carbohydrates accompanied by an increased body weight gain. In addition, L. salivarius LI01 produced indole-3-lactic acid (ILA) and enhanced arginine metabolism by rebalancing the interconversion between arginine and proline. These findings provide evidence showing that L. salivarius LI01 can directly impact the host by modulating immunity and metabolism. KEY POINTS : • Lactobacillus salivarius LI01 conventionalizes the cytokine profile and activates the immune response. • LI01 modulates carbohydrate metabolism and arginine transaction. • LI01 generates tryptophan-derived indole-3-lactic acid. • The cytochrome P450 family contributes to the response to altered metabolites.


Asunto(s)
Microbioma Gastrointestinal , Ligilactobacillus salivarius , Probióticos , Animales , Inmunidad , Ratas , Ratas Sprague-Dawley
3.
Clin Infect Dis ; 71(10): 2669-2678, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32497191

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) is an emerging serious global health problem. Gastrointestinal symptoms are common in COVID-19 patients, and severe acute respiratory syndrome coronavirus 2 RNA has been detected in stool specimens. However, the relationship between the gut microbiome and disease remains to be established. METHODS: We conducted a cross-sectional study of 30 patients with COVID-19, 24 patients with influenza A(H1N1), and 30 matched healthy controls (HCs) to identify differences in the gut microbiota by 16S ribosomal RNA gene V3-V4 region sequencing. RESULTS: Compared with HCs, COVID-19 patients had significantly reduced bacterial diversity; a significantly higher relative abundance of opportunistic pathogens, such as Streptococcus, Rothia, Veillonella, and Actinomyces; and a lower relative abundance of beneficial symbionts. Five biomarkers showed high accuracy for distinguishing COVID-19 patients from HCs with an area under the curve (AUC) up to 0.89. Patients with H1N1 displayed lower diversity and different overall microbial composition compared with COVID-19 patients. Seven biomarkers were selected to distinguish the 2 cohorts (AUC = 0.94). CONCLUSIONS: The gut microbial signature of patients with COVID-19 was different from that of H1N1 patients and HCs. Our study suggests the potential value of the gut microbiota as a diagnostic biomarker and therapeutic target for COVID-19, but further validation is needed.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Estudios Transversales , Disbiosis , Heces , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , ARN Ribosómico 16S/genética , SARS-CoV-2
4.
BMC Surg ; 20(1): 233, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33046007

RESUMEN

BACKGROUND: For ventral hernia, endoscopic sublay repair (ESR) may overcome the disadvantages of open sublay and laparoscopic intraperitoneal onlay mesh repair. This retrospective study presents the preliminary multicenter results of ESR from China. The feasibility, safety, and effectiveness of ESR were evaluated; its surgical points and indications were summarized. METHODS: The study reviewed 156 ventral hernia patients planned to perform with ESR in ten hospitals between March 2016 and July 2019. Patient demographics, hernia characteristics, operative variables, and surgical results were recorded and analyzed. RESULTS: ESR was performed successfully in 153 patients, 135 with totally extraperitoneal sublay (TES) and 18 with transabdominal sublay (TAS). In 19 patients, TES was performed with the total visceral sac separation (TVS) technique, in which the space separation is carried out along the peritoneum, avoiding damage to the aponeurotic structure. Endoscopic transversus abdominis release (eTAR) was required in 17.0% of patients, and only 18.3% of patients required permanent mesh fixation. The median operative time was 135 min. Most patients had mild pain and resume eating soon after operation. No severe intraoperative complications occurred. Bleeding in the extraperitoneal space occurred in two patients and was stopped by nonsurgical treatment. Seroma and chronic pain were observed in 5.23 and 3.07% of patients. One recurrence occurred after TAS repair for an umbilical hernia. CONCLUSION: ESR is feasible, safe, and effective for treating ventral hernias when surgeons get the relevant surgical skills, such as the technique of "partition breaking," TVS, and eTAR. Small-to-medium ventral hernias are the major indications.


Asunto(s)
Hernia Ventral , Herniorrafia , Laparoscopía , Anciano , China , Femenino , Hernia Ventral/cirugía , Humanos , Masculino , Persona de Mediana Edad , Complicaciones Posoperatorias , Estudios Retrospectivos , Mallas Quirúrgicas
5.
Appl Microbiol Biotechnol ; 103(1): 375-393, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30345482

RESUMEN

Acute liver failure is a drastic, unpredictable clinical syndrome with high mortality. Various preventive and adjuvant therapies based on modulating the gut flora have been proposed for hepatic injury. We aimed to explore the preventive and therapeutic effects of Bifidobacterium adolescentis CGMCC15058 on rat liver failure, as well as the potential microecological and immunological mechanisms of those effects. B. adolescentis CGMCC15058 (3 × 109 CFU), isolated from healthy human stool, was gavaged to Sprague-Dawley rats for 14 days. Acute liver injury was induced on the 15th day by intraperitoneal injection of D-galactosamine. After 24 h, liver and terminal ileum histology, liver function, plasma cytokines, bacterial translocation and gut microbiota composition were assessed. We found that pretreatment with B. adolescentis significantly relieved elevated serum levels of alanine aminotransferase (ALT), total bile acid and lipopolysaccharide-binding protein and enhanced the expression of mucin 4 and the tight junction protein zonula occludens-1. B. adolescentis exhibited anti-inflammatory properties as indicated by decreased levels of mTOR and the inflammatory cytokines TNF-α and IL-6, as well as elevated levels of the anti-inflammatory cytokine interleukins-10 in the liver. Similar anti-inflammatory signs were also found in plasma. B. adolescentis significantly altered the microbial community, depleting the common pathogenic taxon Proteus and markedly enriching the taxa Coriobacteriaceae, Bacteroidales and Allobaculum, which are involved in regulating the metabolism of lipids and aromatic amino acids. Our findings not only suggest B. adolescentis acts as a prospective probiotic against liver failure but also provide new insights into the prevention and treatment of liver disease.


Asunto(s)
Bifidobacterium adolescentis , Enfermedad Hepática Inducida por Sustancias y Drogas/terapia , Microbioma Gastrointestinal/fisiología , Intestinos/fisiología , Proteínas de Fase Aguda , Animales , Bifidobacterium adolescentis/aislamiento & purificación , Proteínas Portadoras/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Citocinas/sangre , Disbiosis/microbiología , Disbiosis/terapia , Heces/microbiología , Galactosamina/efectos adversos , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Humanos , Hígado/patología , Masculino , Glicoproteínas de Membrana/sangre , Ratas Sprague-Dawley
6.
Appl Microbiol Biotechnol ; 103(23-24): 9673-9686, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31713675

RESUMEN

The liver is an important digestive gland, and acute liver failure results in high mortality. Probiotics are considered potential adjuvant therapies for liver disease. This study aimed to investigate the beneficial effects of Lactobacillus helveticus R0052 on acute liver injury and the underlying mechanisms. Sprague-Dawley rats were gavaged with L. helveticus R0052 suspensions (3 × 109 CFU) for 1 week. Subsequently, acute liver injury was induced by intraperitoneal D-galactosamine injection on the eighth day. After 24 h, samples (blood, liver, ileum, faeces) were collected and assessed for histological injury, inflammation, intestinal barrier, gut microbiome and metabolome. L. helveticus R0052 alleviated aminotransferase, bilirubin and total bile acid elevation and histological hepatic injuries. Additionally, L. helveticus R0052 exhibited anti-inflammatory properties by downregulating Toll-like receptors, tumour necrosis factor-α and nuclear factor-κb transcription in liver samples and decreasing proinflammatory cytokine plasma concentrations. Additionally, L. helveticus R0052 ameliorated intestinal abnormalities and regulated Toll-like receptors, claudin2 and mucin3 gene transcription in the intestine. These effects were associated with gut microbiome and metabolome modulation by L. helveticus R0052. Probiotic pretreatment enriched Lactobacillus and Bacteroides and depleted Flavonifractor and Acetatifactor in the gut microbiome. Meanwhile, L. helveticus R0052 improved carbohydrate and fatty acid metabolism and reduced lithocholic acid levels. These results indicate that L. helveticus R0052 is promising for alleviating acute liver injury and provide new insights regarding the correlations among the microbiome, the metabolome, the intestinal barrier and liver disease.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Galactosamina/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus helveticus/fisiología , Metaboloma/efectos de los fármacos , Probióticos/uso terapéutico , Animales , Biomarcadores/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Citocinas/sangre , Heces/química , Heces/microbiología , Galactosamina/administración & dosificación , Intestinos/efectos de los fármacos , Intestinos/microbiología , Intestinos/patología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/fisiopatología , Masculino , Probióticos/administración & dosificación , Probióticos/farmacología , Ratas , Ratas Sprague-Dawley
7.
Environ Microbiol ; 18(7): 2272-86, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27243236

RESUMEN

We selected 42 early-stage primary biliary cirrhosis (PBC) patients and 30 healthy controls (HC). Metagenomic sequencing of the 16S rRNA gene was used to characterize the fecal microbiome. UPLC-MS/MS assaying of small molecules was used to characterize the metabolomes of the serum, urine and feces. Liquid chip assaying of serum cytokines was used to characterize the immune profiles. The gut of PBC patients were depleted of some potentially beneficial bacteria, such as Acidobacteria, Lachnobacterium sp., Bacteroides eggerthii and Ruminococcus bromii, but were enriched in some bacterial taxa containing opportunistic pathogens, such as γ-Proteobacteria, Enterobacteriaceae, Neisseriaceae, Spirochaetaceae, Veillonella, Streptococcus, Klebsiella, Actinobacillus pleuropneumoniae, Anaeroglobus geminatus, Enterobacter asburiae, Haemophilus parainfluenzae, Megasphaera micronuciformis and Paraprevotella clara. Several altered gut bacterial taxa exhibited potential interactions with PBC through their associations with altered metabolism, immunity and liver function indicators, such as those of Klebsiella with IL-2A and Neisseriaceae with urinary indoleacrylate. Many gut bacteria, such as some members of Bacteroides, were altered in their associations with the immunity and metabolism of PBC patients, although their relative abundances were unchanged. Consequently, the gut microbiome is altered and may be critical for the onset or development of PBC by interacting with metabolism and immunity.


Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Tracto Gastrointestinal/microbiología , Cirrosis Hepática Biliar/inmunología , Bacterias/clasificación , Bacterias/genética , Heces/microbiología , Femenino , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/metabolismo , Humanos , Cirrosis Hepática Biliar/metabolismo , Cirrosis Hepática Biliar/microbiología , Masculino , Metagenómica , Persona de Mediana Edad
8.
mSphere ; 9(1): e0067223, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38193757

RESUMEN

Acetaminophen is a widely used antipyretic and analgesic drug, and its overdose is the leading cause of drug-induced acute liver failure. This study aimed to investigate the effect and mechanism of Lacticaseibacillus casei Shirota (LcS), an extensively used and highly studied probiotic, on acetaminophen-induced acute liver injury. C57BL/6 mice were gavaged with LcS suspension or saline once daily for 7 days before acute liver injury was induced via intraperitoneal injection of 300 mg/kg acetaminophen. The results showed that LcS significantly decreased acetaminophen-induced liver and ileum injury, as demonstrated by reductions in the increases in aspartate aminotransferase, total bile acids, total bilirubin, indirect bilirubin, and hepatic cell necrosis. Moreover, LcS alleviated acetaminophen-induced intestinal mucosal permeability, decreased serum IL-1α and lipopolysaccharide levels, and elevated serum eosinophil chemokine (eotaxin) and hepatic glutathione levels. Furthermore, analysis of the gut microbiota and metabolome showed that LcS reduced the acetaminophen-enriched levels of Cyanobacteria, Oxyphotobacteria, long-chain fatty acids, cholesterol, and sugars in the gut. Additionally, the transcriptomic and proteomic results showed that LcS mitigated the decrease in metabolic and immune pathways as well as glutathione formation during acetaminophen-induced acute liver injury. This is the first study showing that pretreatment with LcS alleviates acetaminophen-enriched acute liver injury, and it provides a reference for the application of LcS.IMPORTANCEAcetaminophen is the most frequently used antipyretic analgesic worldwide. As a result, overdoses easily occur and lead to drug-induced acute liver injury, which quickly progresses to liver failure with a mortality of 60%-80% if not corrected in time. The current emergency treatment for overused acetaminophen needs to be administered within 8 hours to avoid liver injury or even liver failure. Therefore, developing preventive strategies for liver injury during planned acetaminophen medication is particularly important, preferably nonpharmacological methods. Lacticaseibacillus casei Shirota (LcS) is a famous probiotic that has been used for many years. Our study found that LcS significantly alleviated acetaminophen-induced acute liver injury, especially acetaminophen-induced liver injury toward fulminant hepatic failure. Here, we elucidated the function and potential mechanisms of LcS in alleviating acetaminophen-induced acute liver injury, hoping it will provide preventive strategies to people during acetaminophen treatment.


Asunto(s)
Antipiréticos , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Lacticaseibacillus casei , Fallo Hepático , Humanos , Ratones , Animales , Acetaminofén/efectos adversos , Proteómica , Ratones Endogámicos C57BL , Administración Oral , Analgésicos , Glutatión , Bilirrubina
9.
Gut Microbes ; 16(1): 2383353, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105259

RESUMEN

The role of the gut microbiota in the occurrence and progression of primary biliary cholangitis (PBC) is not fully understood. First, the fecal microbiota of patients with PBC (n = 4) (PBC-FMT) or healthy individuals (n = 3) (HC-FMT) was transplanted into pseudo germ-free mice or 2OA-BSA-induced PBC models. The functions, histology and transcriptome of the liver, and microbiota and metabolome of the feces were analyzed. Second, the liver transcriptomes of PBC patients (n = 7) and normal individuals (n = 7) were analyzed. Third, the liver transcriptomes of patients with other liver diseases were collected from online databases and compared with our human and mouse data. Our results showed that PBC-FMT increased the serum ALP concentration, total bile acid content, liver injury and number of disease-related pathways enriched with upregulated liver genes in pseudo germ-free mice and increased the serum glycylproline dipeptidyl aminopeptidase level and liver damage in a 2OA-BSA-induced PBC model. The gut microbiota and metabolome differed between PBC-FMT and HC-FMT mice and reflected those of their donors. PBC-FMT tended to upregulate hepatic immune and signal transduction pathways but downregulate metabolic pathways, as in some PBC patients. The hematopoietic cell lineage, Toll-like receptor, and PPAR signaling pathway were not affected in patients with alcoholic hepatitis, HBV, HCV, HCV cirrhosis, or NASH, indicating their potential roles in the gut microbiota affecting PBC. In conclusion, the altered gut microbiota of PBC patients plays an important role in the occurrence and progression of PBC. The improvement of the gut microbiota is worthy of in-depth research and promotion as a critical aspect of PBC prevention and treatment.


Asunto(s)
Modelos Animales de Enfermedad , Heces , Microbioma Gastrointestinal , Cirrosis Hepática Biliar , Hígado , Animales , Humanos , Ratones , Cirrosis Hepática Biliar/microbiología , Cirrosis Hepática Biliar/patología , Cirrosis Hepática Biliar/metabolismo , Hígado/patología , Hígado/metabolismo , Hígado/microbiología , Heces/microbiología , Femenino , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Trasplante de Microbiota Fecal , Masculino , Ácidos y Sales Biliares/metabolismo , Transcriptoma , Ratones Endogámicos C57BL
10.
J Cardiovasc Pharmacol ; 61(6): 482-8, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23429591

RESUMEN

: This study aimed to investigate the effects of salvianolic acid A (Sal A) on the time course of plasma and tissue dimethylarginine levels after myocardial infarction (MI) induced by left coronary artery ligation. The rats were assigned to 4 groups: Sham, MI, and MI treated with Sal A (1 or 5 mg/kg). The results showed that plasma symmetric dimethylarginine and asymmetric dimethylarginine (ADMA) levels separately reached the peak at the first and second day after MI. Dimethylarginine dimethylaminohydrolase (DDAH) activity in the heart was remarkably inhibited on the initial 2 days. Sal A restored DDAH activity in the heart and decreased the elevated plasma ADMA levels. ADMA concentrations in the heart and liver were significantly increased after MI, which could also be reduced by Sal A. In addition, Sal A showed regulating effects on symmetric dimethylarginine levels in the liver and also in the ischemic zone of heart. In conclusion, the variations of dimethylarginines in plasma and tissues were induced by the inhibition of DDAH activity and their leakage in the infarct zone after MI. Sal A exerted beneficial effects in MI by decreasing plasma and tissue dimethylarginine levels via restoring DDAH activity.


Asunto(s)
Arginina/análogos & derivados , Ácidos Cafeicos/uso terapéutico , Ventrículos Cardíacos/metabolismo , Lactatos/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Inhibidores de la Bomba de Protones/uso terapéutico , Amidohidrolasas/sangre , Animales , Arginina/sangre , Cromatografía Líquida de Alta Presión , Creatinina/sangre , Modelos Animales de Enfermedad , Riñón/metabolismo , Hígado/metabolismo , Masculino , Infarto del Miocardio/sangre , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem
11.
Free Radic Biol Med ; 203: 11-23, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37003500

RESUMEN

Acetaminophen (APAP) overdose is the most common driver of drug-induced liver injury (DILI) worldwide, and the gut microbiome plays a crucial role in this process. In this study, we estimated the effect of Bifidobacterium longum R0175 on APAP-induced liver injury in mice and discovered that B. longum R0175 alleviated liver injury by diminishing inflammation, reducing oxidative stress levels, inhibiting hepatocyte death and improving APAP-induced microbiome dysbiosis. Further studies revealed that the antioxidative effects of B. longum R0175 were primarily due to activation of the Nrf2 pathway, which was supported by the Nrf2 pathway inhibitor ML385 counteracting these ameliorative effects. B. longum R0175 modified intestinal metabolites, especially the key metabolite sedanolide, which could activate the Nrf2 pathway and contribute to the protective effects against APAP-induced liver injury. Moreover, we found that sedanolide exhibited close interrelationships with specific microbial taxa, indicating that this factor may be derived from gut microbes. In conclusion, our work demonstrated that B. longum R0175 could reduce oxidative damage, inflammation and hepatocyte death by activating the Nrf2 pathway. Importantly, we identified the microbiota-derived metabolite sedanolide, which was first discovered in the mouse intestine, as a key agonist of the Nrf2 pathway and primary effector of B. longum R0175 in APAP challenge. These findings provide new perspectives for APAP overdose therapy and demonstrate the enormous potential of B. longum R0175 in alleviating acute liver injury.


Asunto(s)
Bifidobacterium longum , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Enfermedad Hepática Inducida por Sustancias y Drogas , Ratones , Animales , Acetaminofén/toxicidad , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Bifidobacterium longum/genética , Hígado/metabolismo , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Inflamación/metabolismo , Ratones Endogámicos C57BL
12.
Int J Mol Sci ; 13(5): 5519-5527, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22754312

RESUMEN

Fluorescence in situ hybridization (FISH) assay is considered the "gold standard" in evaluating HER2/neu (HER2) gene status. However, FISH detection is costly and time consuming. Thus, we established nuclei microarray with extracted intact nuclei from paraffin embedded breast cancer tissues for FISH detection. The nuclei microarray FISH (NMFISH) technology serves as a useful platform for analyzing HER2 gene/chromosome 17 centromere ratio. We examined HER2 gene status in 152 cases of invasive ductal carcinomas of the breast that were resected surgically with FISH and NMFISH. HER2 gene amplification status was classified according to the guidelines of the American Society of Clinical Oncology and College of American Pathologists (ASCO/CAP). Comparison of the cut-off values for HER2/chromosome 17 centromere copy number ratio obtained by NMFISH and FISH showed that there was almost perfect agreement between the two methods (κ coefficient 0.920). The results of the two methods were almost consistent for the evaluation of HER2 gene counts. The present study proved that NMFISH is comparable with FISH for evaluating HER2 gene status. The use of nuclei microarray technology is highly efficient, time and reagent conserving and inexpensive.


Asunto(s)
Neoplasias de la Mama/genética , Carcinoma Ductal de Mama/genética , Amplificación de Genes , Receptor ErbB-2/genética , Adulto , Anciano , Anciano de 80 o más Años , Mama/metabolismo , Femenino , Humanos , Hibridación Fluorescente in Situ , Análisis por Micromatrices , Persona de Mediana Edad
13.
J Inflamm Res ; 15: 987-1004, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35210807

RESUMEN

BACKGROUND: Streptococcus pneumoniae (SP) is the most common cause of bacterial pneumonia, especially for people with immature or compromised immune systems. In addition to vaccination and antibiotics, immune regulation through microbial intervention has emerged in recent anti-SP infection research. This study investigated the therapeutic effect of a combination of live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus (CBLEB), a widely used probiotic drug, on SP infection in rats. METHODS: An immunocompromised SP-infection rat model was established by intraperitoneal injection of cyclophosphamide and nasal administration of SP strain ATCC49619. Samples from SP-infected, SP-infected and CBLEB-treated, and healthy rats were collected to determine blood indicators, serum cytokines, gut microbiota, faecal and serum metabolomes, lung- and colon-gene transcriptions, and histopathological features. RESULTS: CBLEB treatment alleviated weight loss, inflammation, organ damage, increase in basophil percentage, red cell distribution width, and RANTES levels and decrease in total protein and albumin levels of immunocompromised SP-infection rats. Furthermore, CBLEB treatment alleviated dysbiosis in gut microbiota, including altered microbial composition and the aberrant abundance of opportunistic pathogenic bacterial taxa such as Eggerthellaceae, and disorders in gut and serum metabolism, including altered metabolomic profiles and differentially enriched metabolites such as 2,4-di-tert-butylphenol in faeces and L-tyrosine in serum. The transcriptome analysis results indicated that the underlying mechanism by which CBLEB fights SP infection is mainly attributed to its regulation of immune-related pathways such as TLR and NLR signalling in the lungs and infection-, inflammation- or metabolism-related pathways such as TCR signalling in the colon. CONCLUSION: The present study shows a potential value of CBLEB in the treatment of SP infection.

14.
Front Cell Infect Microbiol ; 12: 1028267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36439215

RESUMEN

Diets rich in fiber may provide health benefits and regulate the gut microbiome, which affects the immune system. However, the role of dietary fiber in Clostridioides difficile infection (CDI) is controversial. Here, we investigated the use of fermentable fibers, such as inulin or pectin, to replace the insoluble fiber cellulose to explore how dietary fiber affects C. difficile-induced colitis in mice through intestinal microecology and metabolomics. Using C. difficile VPI 10463, we generated a mouse model of antibiotic-induced CDI. We evaluated disease outcomes and the microbial community among mice fed two fermentable fibers (inulin or pectin) versus the insoluble fiber cellulose. We analyzed and compared the gut microbiota, intestinal epithelium, cytokine levels, immune responses, and metabolites between the groups. Severe histological injury and elevated cytokine levels were observed in colon tissues after infection. Different diets showed different effects, and pectin administration protected intestinal epithelial permeability. Pectin also steadily increased the diversity of the microbiome and decreased the levels of C. difficile-induced markers of inflammation in serum and colonic tissues. The pectin group showed a higher abundance of Lachnospiraceae and a lower abundance of the conditionally pathogenic Enterobacteriaceae than the cellulose group with infection. The concentration of short-chain fatty acids in the cecal contents was also higher in the pectin group than in the cellulose group. Pectin exerted its effects through the aryl hydrocarbon receptor (AhR) pathway, which was confirmed by using the AhR agonist FICZ and the inhibitor CH2223191. Our results show that pectin alters the microbiome and metabolic function and triggers a protective immune response.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Enterocolitis Seudomembranosa , Ratones , Animales , Fibras de la Dieta , Inulina , Modelos Animales de Enfermedad , Pectinas , Celulosa , Citocinas
15.
Microb Biotechnol ; 15(1): 247-261, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33492728

RESUMEN

Millions of people die from liver diseases annually, and liver failure is one of the three major outcomes of liver disease. The gut microbiota plays a crucial role in liver diseases. This study aimed to explore the effects of Lactobacillus casei strain Shirota (LcS), a probiotics used widely around the world, on acute liver injury (ALI), as well as the underlying mechanism. Sprague Dawley rats were intragastrically administered LcS suspensions or placebo once daily for 7 days before induction of ALI by intraperitoneal injection of D-galactosamine (D-GalN). Histopathological examination and assessments of liver biochemical markers, inflammatory cytokines, and the gut microbiota, metabolome and transcriptome were conducted. Our results showed that pretreatment with LcS reduced hepatic and intestinal damage and reduced the elevation of serum gamma-glutamyltranspeptidase (GGT), total bile acids, IL-5, IL-10, G-CSF and RANTES. The analysis of the gut microbiota, metabolome and transcriptome showed that LcS lowered the ratio of Firmicutes to Bacteroidetes; reduced the enrichment of metabolites such as chenodeoxycholic acid, deoxycholic acid, lithocholic acid, d-talose and N-acetyl-glucosamine, reduce the depletion of d-glucose and l-methionine; and alleviated the downregulation of retinol metabolism and PPAR signalling and the upregulation of the pyruvate metabolism pathway in the liver. These results indicate the promising prospect of using LcS for the treatment of liver diseases, particularly ALI.


Asunto(s)
Microbioma Gastrointestinal , Lacticaseibacillus casei , Enfermedades Metabólicas , Probióticos , Animales , Inflamación , Hígado , Ratas , Ratas Sprague-Dawley
16.
Microbiol Spectr ; 10(1): e0159621, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107323

RESUMEN

The gut microbiota drives individual sensitivity to excess acetaminophen (APAP)-mediated hepatotoxicity. It has been reported that the bacterium Akkermansia muciniphila protects hosts against liver disease via the liver-gut axis, but its therapeutic potential for drug-induced liver injury remains unclear. In this study, we aimed to investigate the effect of A. muciniphila on APAP-induced liver injury and the underlying mechanism. Administration of A. muciniphila efficiently alleviated APAP-induced hepatotoxicity and reduced the levels of serum alanine aminotransferase (ALT) and aspartate transaminase (AST). A. muciniphila significantly attenuated APAP-induced oxidative stress and the inflammatory response, as evidenced by restoration of the reduced glutathione/oxidized glutathione (GSH/GSSG) balance, enhanced superoxide dismutase (SOD) activity, reduced proinflammatory cytokine production, and alleviation of macrophage and neutrophil infiltration. Moreover, A. muciniphila maintained gut barrier function, reshaped the perturbed microbial community and promoted short-chain fatty acid (SCFA) secretion. The beneficial effects of A. muciniphila were accompanied by alterations in hepatic gene expression at the transcriptional level and activation of the phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway. Our results suggested that A. muciniphila could be a potential pretreatment for APAP-induced liver injury. IMPORTANCE Our work revealed that A. muciniphila attenuated APAP-induced liver injury by alleviating oxidative stress and inflammation in the liver, and its hepatoprotective effect was accompanied by activation of the PI3K/Akt pathway and mediated by regulation of the composition and metabolic function of the intestinal microbiota. This finding suggested that the microbial community is a non-negligible impact on drug metabolism and probiotic administration could be a potential therapy for drug-induced liver injury.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Probióticos/administración & dosificación , Akkermansia/fisiología , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Crónica Inducida por Sustancias y Drogas/microbiología , Ácidos Grasos Volátiles/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Ann Hematol ; 90(11): 1299-305, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21344225

RESUMEN

Mantle cell lymphoma (MCL) is a rare, specific lymphoma subtype. Though the morphologic and immunophenotypic features of MCL have been well described in recent literatures, it is still a diagnostic dilemma because of its frequent confusion with other small B cell lymphomas (SBCLs). In the present study, we primarily focus on establishing a sensitive and specific method for the diagnosis of MCL, which is efficient to distinguish this disease from other SBCLs. We carried out our investigation for MCL and other SBCLs (including SLL, FL, MZL, and MALT) on their feature of morphology, immunophenotype, and t(11;14)(q13;q32) translocation analysis based on polymerase chain reaction (PCR) and interphase nuclei micro-array fluorescence in situ hybridization (FISH). The morphologic and immunologic analysis showed the positive rate of cyclin D1 was 76.47% in MCL, which was significantly higher than that in other SBCLs. The positive rate of t(11;14) translocation was 25.81% and 35.48%, respectively, tested by general and semi-nested PCR, while 93.10% positive rate was shown with low background and strong signals pattern when tested by Nuclei micro-array FISH. Our research shows that t(11;14) translocation is a special and useful diagnostic marker for MCL, and detection of the marker by nuclei micro-array FISH is convenient and economic, especially more sensitive and specific than other methods for the diagnosis of MCL.


Asunto(s)
Núcleo Celular/genética , Hibridación Fluorescente in Situ/métodos , Linfoma de Células del Manto/diagnóstico , Linfoma de Células del Manto/genética , Análisis por Micromatrices/métodos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Cromosomas Humanos Par 11 , Femenino , Humanos , Inmunofenotipificación , Linfoma de Células del Manto/patología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa/métodos , Pronóstico , Sensibilidad y Especificidad , Translocación Genética , Adulto Joven
18.
Front Surg ; 8: 740430, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34676240

RESUMEN

Purpose: Many patients develop a parastomal hernia within the first 2 years of stoma formation, and even surgical repair is associated with high recurrence rates. An intraperitoneal approach is typically used for the laparoscopic repair of parastomal hernia; it is unknown whether a totally extraperitoneal technique (TEP) is feasible. Here we describe a laparoscopic TEP approach using a modified Sugarbaker method for the repair of parastomal hernia. Methods: Seven patients underwent parastomal hernia repair. The retrograde puncture technique was used to create the extrapneumoperitoneum, and the peritoneum was separated with a laparoscopic TEP approach; the mesh was placed using a modified Sugarbaker technique. Results: All patients had an oncologic etiology for stoma creation. The mean (±SD) size of the hernia defect was 3.1 ± 2.7 cm and the mesh size was 303.4 ± 96.8 cm2. The mean operative time was 195.5 ± 20.7 min and average length of hospital stay after surgery was 4.8 ± 2.1 days. One patient had intraoperative subcutaneous emphysema. The average follow-up time was 8.5 ± 2.7 months; mild pain occurred in 2 patients, 3 experienced seroma formation (with no special treatment required), and 1 had early intestinal obstruction (which was treated with conservative care). There was no hernia recurrence, wound complications, or infections of the surgical site or mesh during follow-up. Conclusion: A laparoscopic TEP technique is technically challenging but feasible. Modified laparoscopic Sugarbaker repair of a parastomal hernia with the TEP technique is safe and effective, although the recurrence rate and late complications require confirmation in more cases with long-term follow-up.

19.
Front Immunol ; 12: 694344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211480

RESUMEN

Immunodeficiency is a very common condition in suboptimal health status and during the development or treatment of many diseases. Recently, probiotics have become an important means for immune regulation. The present study aimed to investigate the mechanism of the immunomodulatory effect of a combination of live Bifidobacterium, Lactobacillus, Enterococcus, and Bacillus (CBLEB), which is a drug used by approximately 10 million patients every year, on cyclophosphamide-immunosuppressed rats. Cyclophosphamide (40 mg/kg) was intraperitoneally injected to induce immunosuppression in a rat model on days 1, 2, 3, and 10. Starting from day 4, the rats were continuously gavaged with CBLEB solution for 15 days. The samples were collected to determine routine blood test parameters, liver and kidney functions, serum cytokine levels, gut microbiota, fecal and serum metabolomes, transcriptomes, and histopathological features. The results indicated that CBLEB treatment reduced cyclophosphamide-induced death, weight loss, and damage to the gut, liver, spleen, and lungs and eliminated a cyclophosphamide-induced increase in the mean hemoglobin content and GGT, M-CSF, and MIP-3α levels and a decrease in the red blood cell distribution width and total protein and creatinine levels in the blood. Additionally, CBLEB corrected cyclophosphamide-induced dysbiosis of the gut microbiota and eliminated all cyclophosphamide-induced alterations at the phylum level in rat feces, including the enrichment in Proteobacteria, Fusobacteriota, and Actinobacteriota and depletion of Spirochaetota and Cyanobacteria. Furthermore, CBLEB treatment alleviated cyclophosphamide-induced alterations in the whole fecal metabolome profile, including enrichment in 1-heptadecanol, succinic acid, hexadecane-1,2-diol, nonadecanoic acid, and pentadecanoic acid and depletion of benzenepropanoic acid and hexane. CBLEB treatment also alleviated cyclophosphamide-induced enrichment in serum D-lyxose and depletion of serum succinic acid, D-galactose, L-5-oxoproline, L-alanine, and malic acid. The results of transcriptome analysis indicated that the mechanism of the effect of CBLEB was related to the induction of recovery of cyclophosphamide-altered carbohydrate metabolism and signal transduction. In conclusion, the present study provides an experimental basis and comprehensive analysis of application of CBLEB for the treatment of immunodeficiency.


Asunto(s)
Bacillus cereus/crecimiento & desarrollo , Bifidobacterium longum subspecies infantis/crecimiento & desarrollo , Enterococcus faecalis/crecimiento & desarrollo , Microbioma Gastrointestinal , Huésped Inmunocomprometido , Síndromes de Inmunodeficiencia/terapia , Lactobacillus acidophilus/crecimiento & desarrollo , Probióticos , Animales , Bacillus cereus/inmunología , Bacillus cereus/metabolismo , Bifidobacterium longum subspecies infantis/inmunología , Bifidobacterium longum subspecies infantis/metabolismo , Ciclofosfamida , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Disbiosis , Metabolismo Energético , Enterococcus faecalis/inmunología , Enterococcus faecalis/metabolismo , Síndromes de Inmunodeficiencia/inducido químicamente , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/microbiología , Lactobacillus acidophilus/inmunología , Lactobacillus acidophilus/metabolismo , Masculino , Metaboloma , Ratas Sprague-Dawley , Transducción de Señal , Transcriptoma
20.
Front Surg ; 8: 659102, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095204

RESUMEN

A parastomal hernia is a type of incisional hernia that occurs in abdominal integuments in the proximity of a stoma. It is a frequent late complication following colostomy. Surgical repair is currently the only treatment option for parastomal hernia. Here we present the case of a 74-year-old patient with parastomal hernia and a history of open surgery treated with a totally extraperitoneal (TEP) endoscopic approach. There was no recurrence of the hernia at the 3-month follow-up. We discuss the feasibility and possible operative approaches for endoscopic repair of parastomal hernia with the TEP technique.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA