Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Br J Cancer ; 127(9): 1615-1628, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35999268

RESUMEN

BACKGROUND: Colorectal cancer (CRC), the most common cancer type, causes high morbidity and mortality. Patients who develop drug resistance to oxaliplatin-based regimens have short overall survival. Thus, identifying molecules involved in the development of oxaliplatin resistance is critical for designing therapeutic strategies. METHODS: A proteomic screen was performed to reveal altered protein kinase phosphorylation in oxaliplatin-resistant (OR) CRC tumour spheroids. The function of CHK2 was characterised using several biochemical techniques and evident using in vitro cell and in vivo tumour models. RESULTS: We revealed that the level of phospho-CHK2(Thr68) was elevated in OR CRC cells and in ~30% of tumour samples from patients with OR CRC. We demonstrated that oxaliplatin activated several phosphatidylinositol 3-kinase-related kinases (PIKKs) and CHK2 downstream effectors and enhanced CHK2/PARP1 interaction to facilitate DNA repair. A phosphorylation mimicking CHK2 mutant, CHK2T68D, but not a kinase-dead CHK2 mutant, CHK2D347A, promoted DNA repair, the CHK2/PARP1 interaction, and cell growth in the presence of oxaliplatin. Finally, we showed that a CHK2 inhibitor, BML-277, reduced protein poly(ADP-ribosyl)ation (PARylation), FANCD2 monoubiquitination, homologous recombination and OR CRC cell growth in vitro and in vivo. CONCLUSION: Our findings suggest that CHK2 activity is critical for modulating oxaliplatin response and that CHK2 is a potential therapeutic target for OR CRC.


Asunto(s)
Quinasa de Punto de Control 2 , Neoplasias Colorrectales , Proteómica , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Resistencia a Antineoplásicos/genética , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Fosfatidilinositol 3-Quinasas , Proteínas Quinasas , Quinasa de Punto de Control 2/metabolismo
2.
J Biomed Sci ; 28(1): 55, 2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301262

RESUMEN

BACKGROUND: Ocular adverse events are common dose-limiting toxicities in cancer patients treated with HSP90 inhibitors, such as AUY922; however, the pathology and molecular mechanisms that mediate AUY922-induced retinal toxicity remain undescribed. METHODS: The impact of AUY922 on mouse retinas and cell lines was comprehensively investigated using isobaric tags for relative and absolute quantitation (iTRAQ)­based proteomic profiling and pathway enrichment analysis, immunohistochemistry and immunofluorescence staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, MTT assay, colony formation assay, and western blot analysis. The effect of AUY922 on the Transient Receptor Potential cation channel subfamily M member 1 (TRPM1)-HSP90 chaperone complex was characterized by coimmunoprecipitation. TRPM1-regulated gene expression was analyzed by RNAseq analysis and gene set enrichment analysis (GSEA). The role of TRPM1 was assessed using both loss-of-function and gain-of-function approaches. RESULTS: Here, we show that the treatment with AUY922 induced retinal damage and cell apoptosis, dysregulated the photoreceptor and retinal pigment epithelium (RPE) layers, and reduced TRPM1 expression. Proteomic profiling and functional annotation of differentially expressed proteins reveals that those related to stress responses, protein folding processes, regulation of apoptosis, cell cycle and growth, reactive oxygen species (ROS) response, cell junction assembly and adhesion regulation, and proton transmembrane transport were significantly enriched in AUY922-treated cells. We found that AUY922 triggered caspase-3-dependent cell apoptosis, increased ROS production and inhibited cell growth. We determined that TRPM1 is a bona fide HSP90 client and characterized that AUY922 may reduce TRPM1 expression by disrupting the CDC37-HSP90 chaperone complex. Additionally, GSEA revealed that TRPM1-regulated genes were associated with retinal morphogenesis in camera-type eyes and the JAK-STAT cascade. Finally, gain-of-function and loss-of-function analyses validated the finding that TRPM1 mediated the cell apoptosis, ROS production and growth inhibition induced by AUY922. CONCLUSIONS: Our study demonstrates the pathology of AUY922-induced retinal toxicity in vivo. TRPM1 is an HSP90 client, regulates photoreceptor morphology and function, and mediates AUY922-induced cytotoxicity.


Asunto(s)
Antineoplásicos/toxicidad , Regulación hacia Abajo , Isoxazoles/toxicidad , Resorcinoles/toxicidad , Retina/efectos de los fármacos , Canales Catiónicos TRPM/genética , Animales , Femenino , Ratones , Ratones Desnudos , Canales Catiónicos TRPM/metabolismo
3.
Am J Pathol ; 182(2): 363-74, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23219426

RESUMEN

Histopathological classification of human prostate cancer (PCA) relies on the morphological assessment of tissue specimens but has limited prognostic value. To address this deficiency, we performed comparative transcriptome analysis of human prostatic acini generated in a three-dimensional basement membrane that recapitulates the differentiated morphological characteristics and gene expression profile of a human prostate glandular epithelial tissue. We then applied an acinar morphogenesis-specific gene profile to two independent cohorts of patients with PCA (total n = 79) and found that those with tumors expressing this profile, which we designated acini-like tumors, had a significantly lower risk of postoperative relapse compared with those tumors with a lower correlation (hazard ratio, 0.078; log-rank test P = 0.009). Multivariate analyses showed superior prognostic prediction performance using this classification system compared with clinical criteria and Gleason scores. We prioritized the genes in this profile and identified programmed cell death protein 4 (PDCD4) and Kruppel-like factor 6 (KLF6) as critical regulators and surrogate markers of prostatic tissue architectures, which form a gene signature that robustly predicts clinical prognosis with a remarkable accuracy in several large series of PCA tumors (total n = 161; concordance index, 0.913 to 0.951). Thus, by exploiting the genomic program associated with prostate glandular differentiation, we identified acini-like PCA and related molecular markers that significantly enhance prognostic prediction of human PCA.


Asunto(s)
Células Acinares/patología , Proteínas Reguladoras de la Apoptosis/metabolismo , Perfilación de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Morfogénesis/genética , Próstata/patología , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Unión al ARN/metabolismo , Células Acinares/metabolismo , Anciano , Proteínas Reguladoras de la Apoptosis/genética , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Células Epiteliales/patología , Regulación Neoplásica de la Expresión Génica , Humanos , Factor 6 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Persona de Mediana Edad , Especificidad de Órganos/genética , Pronóstico , Próstata/crecimiento & desarrollo , Próstata/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/cirugía , Proteínas Proto-Oncogénicas/genética , Proteínas de Unión al ARN/genética , Recurrencia
4.
J Adv Res ; 43: 45-57, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36585114

RESUMEN

INTRODUCTION: Acral melanoma is a predominant and aggressive subtype of melanoma in non-Caucasian populations. There is a lack of genotype-driven therapies for over 50% of patients. TRPM1 (transient receptor potential melastatin 1), a nonspecific cation channel, is mainly expressed in retinal bipolar neurons and skin. Nonetheless, the function of TRPM1 in melanoma progression is poorly understood. OBJECTIVES: We investigated the association between TRPM1 and acral melanoma progression and revealed the molecular mechanisms by which TRPM1 promotes tumor progression and malignancy. METHODS: TRPM1 expression and CaMKII phosphorylation in tumor specimens were tested by immunohistochemistry analysis and scored by two independent investigators. The functions of TRPM1 and CaMKII were assessed using loss-of-function and gain-of-function approaches and examined by western blotting, colony formation, cell migration and invasion, and xenograft tumor growth assays. The effects of a CaMKII inhibitor, KN93, were evaluated using both in vitro cell and in vivo xenograft mouse models. RESULTS: We revealed that TRPM1 protein expression was positively associated with tumor progression and shorter survival in patients with acral melanoma. TRPM1 promoted AKT activation and the colony formation, cell mobility, and xenograft tumor growth of melanoma cells. TRPM1 elevated cytosolic Ca2+ levels and activated CaMKIIδ (Ca2+/calmodulin-dependent protein kinase IIδ) to promote the CaMKIIδ/AKT interaction and AKT activation. The functions of TRPM1 in melanoma cells were suppressed by a CaMKII inhibitor, KN93. Significant upregulation of phospho-CaMKII levels in acral melanomas was related to increased expression of TRPM1. An acral melanoma cell line with high expression of TRPM1, CA11, was isolated from a patient to show the anti-tumor activity of KN93 in vitro and in vivo. CONCLUSIONS: TRPM1 promotes tumor progression and malignancy in acral melanoma by activating the Ca2+/CaMKIIδ/AKT pathway. CaMKII inhibition may be a potential therapeutic strategy for treating acral melanomas with high expression of TRPM1.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Melanoma , Canales Catiónicos TRPM , Animales , Humanos , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Procesos Neoplásicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Canales Catiónicos TRPM/metabolismo , Melanoma Cutáneo Maligno
6.
J Exp Med ; 213(13): 2967-2988, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27881732

RESUMEN

Although traditional chemotherapy kills a fraction of tumor cells, it also activates the stroma and can promote the growth and survival of residual cancer cells to foster tumor recurrence and metastasis. Accordingly, overcoming the host response induced by chemotherapy could substantially improve therapeutic outcome and patient survival. In this study, resistance to treatment and metastasis has been attributed to expansion of stem-like tumor-initiating cells (TICs). Molecular analysis of the tumor stroma in neoadjuvant chemotherapy-treated human desmoplastic cancers and orthotopic tumor xenografts revealed that traditional maximum-tolerated dose chemotherapy, regardless of the agents used, induces persistent STAT-1 and NF-κB activity in carcinoma-associated fibroblasts. This induction results in the expression and secretion of ELR motif-positive (ELR+) chemokines, which signal through CXCR-2 on carcinoma cells to trigger their phenotypic conversion into TICs and promote their invasive behaviors, leading to paradoxical tumor aggression after therapy. In contrast, the same overall dose administered as a low-dose metronomic chemotherapy regimen largely prevented therapy-induced stromal ELR+ chemokine paracrine signaling, thus enhancing treatment response and extending survival of mice carrying desmoplastic cancers. These experiments illustrate the importance of stroma in cancer therapy and how its impact on treatment resistance could be tempered by altering the dosing schedule of systemic chemotherapy.


Asunto(s)
Administración Metronómica , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , FN-kappa B/metabolismo , Receptores de Interleucina-8B/metabolismo , Factor de Transcripción STAT1/metabolismo , Neoplasias de la Mama/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Células MCF-7 , Células del Estroma/metabolismo , Células del Estroma/patología , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA