Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.396
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(11): 2703-2716.e23, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38657602

RESUMEN

Antigen presentation defects in tumors are prevalent mechanisms of adaptive immune evasion and resistance to cancer immunotherapy, whereas how tumors evade innate immunity is less clear. Using CRISPR screens, we discovered that IGSF8 expressed on tumors suppresses NK cell function by interacting with human KIR3DL2 and mouse Klra9 receptors on NK cells. IGSF8 is normally expressed in neuronal tissues and is not required for cell survival in vitro or in vivo. It is overexpressed and associated with low antigen presentation, low immune infiltration, and worse clinical outcomes in many tumors. An antibody that blocks IGSF8-NK receptor interaction enhances NK cell killing of malignant cells in vitro and upregulates antigen presentation, NK cell-mediated cytotoxicity, and T cell signaling in vivo. In syngeneic tumor models, anti-IGSF8 alone, or in combination with anti-PD1, inhibits tumor growth. Our results indicate that IGSF8 is an innate immune checkpoint that could be exploited as a therapeutic target.


Asunto(s)
Inmunidad Innata , Inmunoterapia , Células Asesinas Naturales , Neoplasias , Animales , Femenino , Humanos , Ratones , Presentación de Antígeno , Línea Celular Tumoral , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Neoplasias/inmunología , Neoplasias/terapia
2.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392959

RESUMEN

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Asunto(s)
Adenina/análogos & derivados , Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/patología , Adenina/análisis , Adenina/química , Adulto , Anciano , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/antagonistas & inhibidores , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Hipoxia de la Célula , Niño , Epigenómica , Femenino , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
3.
EMBO J ; 43(3): 437-461, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228917

RESUMEN

Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Respuesta al Choque Térmico/genética , Factores de Transcripción del Choque Térmico/metabolismo , Activación Transcripcional , Nucleotidiltransferasas/metabolismo , Complejo Mediador/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo
4.
Immunity ; 51(3): 491-507.e7, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533057

RESUMEN

Tissue-resident memory CD8+ T (Trm) cells share core residency gene programs with tumor-infiltrating lymphocytes (TILs). However, the transcriptional, metabolic, and epigenetic regulation of Trm cell and TIL development and function is largely undefined. Here, we found that the transcription factor Bhlhe40 was specifically required for Trm cell and TIL development and polyfunctionality. Local PD-1 signaling inhibited TIL Bhlhe40 expression, and Bhlhe40 was critical for TIL reinvigoration following anti-PD-L1 blockade. Mechanistically, Bhlhe40 sustained Trm cell and TIL mitochondrial fitness and a functional epigenetic state. Building on these findings, we identified an epigenetic and metabolic regimen that promoted Trm cell and TIL gene signatures associated with tissue residency and polyfunctionality. This regimen empowered the anti-tumor activity of CD8+ T cells and possessed therapeutic potential even at an advanced tumor stage in mouse models. Our results provide mechanistic insights into the local regulation of Trm cell and TIL function.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/inmunología , Linfocitos T CD8-positivos/inmunología , Proteínas de Homeodominio/inmunología , Mitocondrias/inmunología , Animales , Epigénesis Genética/inmunología , Regulación de la Expresión Génica/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1/inmunología
5.
Cell ; 152(1-2): 82-96, 2013 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-23313552

RESUMEN

The induction of pluripotency or trans-differentiation of one cell type to another can be accomplished with cell-lineage-specific transcription factors. Here, we report that repression of a single RNA binding polypyrimidine-tract-binding (PTB) protein, which occurs during normal brain development via the action of miR-124, is sufficient to induce trans-differentiation of fibroblasts into functional neurons. Besides its traditional role in regulated splicing, we show that PTB has a previously undocumented function in the regulation of microRNA functions, suppressing or enhancing microRNA targeting by competitive binding on target mRNA or altering local RNA secondary structure. A key event during neuronal induction is the relief of PTB-mediated blockage of microRNA action on multiple components of the REST complex, thereby derepressing a large array of neuronal genes, including miR-124 and multiple neuronal-specific transcription factors, in nonneuronal cells. This converts a negative feedback loop to a positive one to elicit cellular reprogramming to the neuronal lineage.


Asunto(s)
Diferenciación Celular , Fibroblastos/citología , MicroARNs/genética , Neuronas/citología , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Animales , Línea Celular , Linaje de la Célula , Regulación hacia Abajo , Humanos , Ratones , MicroARNs/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Empalme del ARN , Sinapsis
6.
Nature ; 603(7903): 934-941, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35130560

RESUMEN

Diffuse intrinsic pontine glioma (DIPG) and other H3K27M-mutated diffuse midline gliomas (DMGs) are universally lethal paediatric tumours of the central nervous system1. We have previously shown that the disialoganglioside GD2 is highly expressed on H3K27M-mutated glioma cells and have demonstrated promising preclinical efficacy of GD2-directed chimeric antigen receptor (CAR) T cells2, providing the rationale for a first-in-human phase I clinical trial (NCT04196413). Because CAR T cell-induced brainstem inflammation can result in obstructive hydrocephalus, increased intracranial pressure and dangerous tissue shifts, neurocritical care precautions were incorporated. Here we present the clinical experience from the first four patients with H3K27M-mutated DIPG or spinal cord DMG treated with GD2-CAR T cells at dose level 1 (1 × 106 GD2-CAR T cells per kg administered intravenously). Patients who exhibited clinical benefit were eligible for subsequent GD2-CAR T cell infusions administered intracerebroventricularly3. Toxicity was largely related to the location of the tumour and was reversible with intensive supportive care. On-target, off-tumour toxicity was not observed. Three of four patients exhibited clinical and radiographic improvement. Pro-inflammatory cytokine levels were increased in the plasma and cerebrospinal fluid. Transcriptomic analyses of 65,598 single cells from CAR T cell products and cerebrospinal fluid elucidate heterogeneity in response between participants and administration routes. These early results underscore the promise of this therapeutic approach for patients with H3K27M-mutated DIPG or spinal cord DMG.


Asunto(s)
Astrocitoma , Neoplasias del Tronco Encefálico , Gangliósidos , Glioma , Histonas , Inmunoterapia Adoptiva , Mutación , Receptores Quiméricos de Antígenos , Astrocitoma/genética , Astrocitoma/inmunología , Astrocitoma/patología , Astrocitoma/terapia , Neoplasias del Tronco Encefálico/genética , Neoplasias del Tronco Encefálico/inmunología , Neoplasias del Tronco Encefálico/patología , Neoplasias del Tronco Encefálico/terapia , Niño , Gangliósidos/inmunología , Perfilación de la Expresión Génica , Glioma/genética , Glioma/inmunología , Glioma/patología , Glioma/terapia , Histonas/genética , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Neoplasias de la Médula Espinal/genética , Neoplasias de la Médula Espinal/inmunología , Neoplasias de la Médula Espinal/patología , Neoplasias de la Médula Espinal/terapia
7.
Nat Methods ; 20(10): 1563-1572, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37723244

RESUMEN

Fluorescent RNAs, aptamers that bind and activate small fluorogenic dyes, have provided a particularly attractive approach to visualizing RNAs in live cells. However, the simultaneous imaging of multiple RNAs remains challenging due to a lack of bright and stable fluorescent RNAs with bio-orthogonality and suitable spectral properties. Here, we develop the Clivias, a series of small, monomeric and stable orange-to-red fluorescent RNAs with large Stokes shifts of up to 108 nm, enabling the simple and robust imaging of RNA with minimal perturbation of the target RNA's localization and functionality. In combination with Pepper fluorescent RNAs, the Clivias enable the single-excitation two-emission dual-color imaging of cellular RNAs and genomic loci. Clivias can also be used to detect RNA-protein interactions by bioluminescent imaging both in live cells and in vivo. We believe that these large Stokes shift fluorescent RNAs will be useful tools for the tracking and quantification of multiple RNAs in diverse biological processes.


Asunto(s)
Aptámeros de Nucleótidos , Colorantes Fluorescentes , ARN , Microscopía Fluorescente , Aptámeros de Nucleótidos/genética
9.
Blood ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38848533

RESUMEN

The liver plays a crucial role in maintaining systemic iron homeostasis by secreting hepcidin, which is essential for coordinating iron levels in the body. Imbalances in iron homeostasis are associated with various clinical disorders related to iron deficiency or iron overload. Despite the clinical significance, the mechanisms underlying how hepatocytes sense extracellular iron levels to regulate hepcidin synthesis and iron storage are not fully understood. In this study, we identified Foxo1, a well-known regulator of macronutrient metabolism, that translocates to the nucleus of hepatocytes in response to high-iron feeding, holo-transferrin, and BMP6 treatment. Furthermore, Foxo1 plays a crucial role in mediating hepcidin induction in response to both iron and BMP signals by directly interacting with evolutionally conserved Foxo binding sites within the hepcidin promoter region. These binding sites were found to colocalize with Smad-binding sites. To investigate the physiological relevance of Foxo1 in iron metabolism, we generated mice with hepatocyte-specific deletion of Foxo1. These mice exhibited reduced hepatic hepcidin expression and serum hepcidin levels, accompanied by elevated serum iron and liver non-heme iron concentrations. Moreover, high-iron diet further exacerbated these abnormalities in iron metabolism in mice lacking hepatic Foxo1. Conversely, hepatocyte-specific Foxo1 overexpression increased hepatic hepcidin expression and serum hepcidin levels, thereby ameliorating iron overload in a murine model of hereditary hemochromatosis (Hfe-/- mice). In summary, our study identifies Foxo1 is a critical regulator of hepcidin and systemic iron homeostasis. Targeting Foxo1 may offer therapeutic opportunities for managing conditions associated with aberrant iron metabolism.

10.
Nat Chem Biol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783134

RESUMEN

Fluorescent RNAs (FRs) provide an attractive approach to visualizing RNAs in live cells. Although the color palette of FRs has been greatly expanded recently, a green FR with high cellular brightness and photostability is still highly desired. Here we develop a fluorogenic RNA aptamer, termed Okra, that can bind and activate the fluorophore ligand ACE to emit bright green fluorescence. Okra has an order of magnitude enhanced cellular brightness than currently available green FRs, allowing the robust imaging of messenger RNA in both live bacterial and mammalian cells. We further demonstrate the usefulness of Okra for time-resolved measurements of ACTB mRNA trafficking to stress granules, as well as live-cell dual-color superresolution imaging of RNA in combination with Pepper620, revealing nonuniform and distinct distributions of different RNAs throughout the granules. The favorable properties of Okra make it a versatile tool for the study of RNA dynamics and subcellular localization.

11.
J Biol Chem ; 300(6): 107371, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38750791

RESUMEN

The sulfite-reducing bacterium Bilophila wadsworthia, a common human intestinal pathobiont, is unique in its ability to metabolize a wide variety of sulfonates to generate sulfite as a terminal electron acceptor (TEA). The resulting formation of H2S is implicated in inflammation and colon cancer. l-cysteate, an oxidation product of l-cysteine, is among the sulfonates metabolized by B. wadsworthia, although the enzymes involved remain unknown. Here we report a pathway for l-cysteate dissimilation in B. wadsworthia RZATAU, involving isomerization of l-cysteate to d-cysteate by a cysteate racemase (BwCuyB), followed by cleavage into pyruvate, ammonia and sulfite by a d-cysteate sulfo-lyase (BwCuyA). The strong selectivity of BwCuyA for d-cysteate over l-cysteate was rationalized by protein structural modeling. A homolog of BwCuyA in the marine bacterium Silicibacter pomeroyi (SpCuyA) was previously reported to be a l-cysteate sulfo-lyase, but our experiments confirm that SpCuyA too displays a strong selectivity for d-cysteate. Growth of B. wadsworthia with cysteate as the electron acceptor is accompanied by production of H2S and induction of BwCuyA. Close homologs of BwCuyA and BwCuyB are present in diverse bacteria, including many sulfate- and sulfite-reducing bacteria, suggesting their involvement in cysteate degradation in different biological environments.


Asunto(s)
Cisteína , Cisteína/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bilophila/metabolismo , Bilophila/enzimología , Racemasas y Epimerasas/metabolismo , Oxidación-Reducción , Liasas de Carbono-Azufre/metabolismo , Liasas de Carbono-Azufre/química , Sulfitos/metabolismo , Humanos
12.
J Biol Chem ; 300(3): 105721, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38311175

RESUMEN

Histone H3 tyrosine-99 sulfation (H3Y99sulf) is a recently identified histone mark that can cross-talk with H4R3me2a to regulate gene transcription, but its role in cancer biology is less studied. Here, we report that H3Y99sulf is a cancer-associated histone mark that can mediate hepatocellular carcinoma (HCC) cells responding to hypoxia. Hypoxia-stimulated SNAIL pathway elevates the expression of PAPSS2, which serves as a source of adenosine 3'-phosphate 5'-phos-phosulfate for histone sulfation and results in upregulation of H3Y99sulf. The transcription factor TDRD3 is the downstream effector of H3Y99sulf-H4R3me2a axis in HCC. It reads and co-localizes with the H3Y99sulf-H4R3me2a dual mark in the promoter regions of HIF1A and PDK1 to regulate gene transcription. Depletion of SULT1B1 can effectively reduce the occurrence of H3Y99sulf-H4R3me2a-TDRD3 axis in gene promoter regions and lead to downregulation of targeted gene transcription. Hypoxia-inducible factor 1-alpha and PDK1 are master regulators for hypoxic responses and cancer metabolism. Disruption of the H3Y99sulf-H4R3me2a-TDRD3 axis can inhibit the expression and functions of hypoxia-inducible factor 1-alpha and PDK1, resulting in suppressed proliferation, tumor growth, and survival of HCC cells suffering hypoxia stress. The present study extends the regulatory and functional mechanisms of H3Y99sulf and improves our understanding of its role in cancer biology.


Asunto(s)
Carcinoma Hepatocelular , Histonas , Neoplasias Hepáticas , Tirosina , Humanos , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Histonas/metabolismo , Hipoxia/genética , Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/metabolismo , Tirosina/metabolismo
13.
Plant J ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981025

RESUMEN

Mangroves grow in tropical/subtropical intertidal habitats with extremely high salt tolerance. Trehalose and trehalose-6-phosphate (T6P) have an alleviating function against abiotic stress. However, the roles of trehalose in the salt tolerance of salt-secreting mangrove Avicennia marina is not documented. Here, we found that trehalose was significantly accumulated in A. marina under salt treatment. Furthermore, exogenous trehalose can enhance salt tolerance by promoting the Na+ efflux from leaf salt gland and root to reduce the Na+ content in root and leaf. Subsequently, eighteen trehalose-6-phosphate synthase (AmTPS) and 11 trehalose-6-phosphate phosphatase (AmTPP) genes were identified from A. marina genome. Abscisic acid (ABA) responsive elements were predicted in AmTPS and AmTPP promoters by cis-acting elements analysis. We further identified AmTPS9A, as an important positive regulator, that increased the salt tolerance of AmTPS9A-overexpressing Arabidopsis thaliana by altering the expressions of ion transport genes and mediating Na+ efflux from the roots of transgenic A. thaliana under NaCl treatments. In addition, we also found that ABA could promote the accumulation of trehalose, and the application of exogenous trehalose significantly promoted the biosynthesis of ABA in both roots and leaves of A. marina. Ultimately, we confirmed that AmABF2 directly binds to the AmTPS9A promoter in vitro and in vivo. Taken together, we speculated that there was a positive feedback loop between trehalose and ABA in regulating the salt tolerance of A. marina. These findings provide new understanding to the salt tolerance of A. marina in adapting to high saline environment at trehalose and ABA aspects.

14.
Bioinformatics ; 40(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38268487

RESUMEN

MOTIVATION: Utilizing both purebred and crossbred data in animal genetics is widely recognized as an optimal strategy for enhancing the predictive accuracy of breeding values. Practically, the different genetic background among several purebred populations and their crossbred offspring populations limits the application of traditional prediction methods. Several studies endeavor to predict the crossbred performance via the partial relationship, which divides the data into distinct sub-populations based on the common genetic background, such as one single purebred population and its corresponding crossbred descendant. However, this strategy makes prediction inaccurate due to ignoring half of the parental information of crossbreed animals. Furthermore, dominance effects, although playing a significant role in crossbreeding systems, cannot be modeled under such a prediction model. RESULTS: To overcome this weakness, we developed a novel multi-breed single-step model using metafounders to assess ancestral relationships across diverse breeds under a unified framework. We proposed to use multi-breed dominance combined relationship matrices to model additive and dominance effects simultaneously. Our method provides a straightforward way to evaluate the heterosis of crossbreeds and the breeding values of purebred parents efficiently and accurately. We performed simulation and real data analyses to verify the potential of our proposed method. Our proposed model improved prediction accuracy under all scenarios considered compared to commonly used methods. AVAILABILITY AND IMPLEMENTATION: The software for implementing our method is available at https://github.com/CAU-TeamLiuJF/MAGE.


Asunto(s)
Genoma , Hibridación Genética , Animales , Genómica/métodos , Simulación por Computador , Programas Informáticos , Modelos Genéticos , Genotipo , Polimorfismo de Nucleótido Simple , Fenotipo
15.
Hepatology ; 79(2): 425-437, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37611260

RESUMEN

BACKGROUND AND AIMS: The predominantly progressive, indeterminate, and predominantly regressive (P-I-R) classification extends beyond staging and provides information on dynamic changes of liver fibrosis. However, the prognostic implication of P-I-R classification is not elucidated. Therefore, in the present research, we investigated the utility of P-I-R classification in predicting the on-treatment clinical outcomes. APPROACH AND RESULTS: In an extension study on a randomized controlled trial, we originally enrolled 1000 patients with chronic hepatitis B and biopsy-proven histological significant fibrosis, and treated them for more than 7 years with entecavir-based therapy. Among the 727 patients with a second biopsy at treatment week 72, we compared P-I-R classification and Ishak score changes in 646 patients with adequate liver sections for the histological evaluation. Progressive, indeterminate, and regressive cases were observed in 70%, 17%, and 13% of patients before treatments and 20%, 14%, and 64% after 72-week treatment, respectively, which could further differentiate the histological outcomes of patients with stable Ishak scores. The 7-year cumulative incidence of HCC was 1.5% for the regressive cases, 4.3% for the indeterminate cases, and 22.8% for the progressive cases ( p <0.001). After adjusting for age, treatment regimen, platelet counts, cirrhosis, Ishak fibrosis score changes, and Laennec staging, the posttreatment progressive had a HR of 17.77 (vs. posttreatment regressive; 95% CI: 5.55-56.88) for the incidence of liver-related events (decompensation, HCC, and death/liver transplantation). CONCLUSIONS: The P-I-R classification can be a meaningful complement to the Ishak fibrosis score not only in evaluating the histological changes but also in predicting the clinical outcomes.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Antivirales/uso terapéutico , Neoplasias Hepáticas/patología , Cirrosis Hepática/patología , Hígado/patología , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/tratamiento farmacológico , Hepatitis B Crónica/patología , Fibrosis , Biopsia/efectos adversos
16.
Am J Respir Crit Care Med ; 209(10): 1246-1254, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38190702

RESUMEN

Rationale: Mycobacterium avium complex (MAC) is the most common cause of nontuberculous mycobacterial (NTM) pulmonary disease (PD), which exhibits increasing global incidence. Current microbiologic methods routinely used in clinical practice lack sensitivity and have long latencies, leading to delays in diagnosis and treatment initiation and evaluation. A clustered regularly interspaced short palindromic repeats (CRISPR)-based assay that measures MAC cell-free DNA (cfDNA) concentrations in serum could provide a rapid means to detect MAC infection and monitor response to antimicrobial treatment. Objectives: To develop and optimize a CRISPR MAC assay for MAC infection detection and to evaluate its diagnostic and prognostic performance in two MAC disease cohorts. Methods: MAC cfDNA serum concentrations were measured in individuals with diagnoses of MAC disease or who had bronchiectasis or chronic obstructive pulmonary disease diagnoses without histories of NTM PD or NTM-positive sputum cultures. Diagnostic performance was analyzed using pretreatment serum from two cohorts. Serum MAC cfDNA changes during MAC PD treatment were evaluated in a subset of patients with MAC PD who received macrolide-based multidrug regimens. Measurements and Main Results: The CRISPR MAC assay detected MAC cfDNA in MAC PD with 97.6% (91.6-99.7%) sensitivity and 97.6% (91.5-99.7%) specificity overall. Serum MAC cfDNA concentrations markedly decreased after MAC-directed treatment initiation in patients with MAC PD who demonstrated MAC culture conversion. Conclusions: This study provides preliminary evidence for the utility of a serum-based CRISPR MAC assay to rapidly detect MAC infection and monitor the response to treatment.


Asunto(s)
Ácidos Nucleicos Libres de Células , Complejo Mycobacterium avium , Infección por Mycobacterium avium-intracellulare , Humanos , Infección por Mycobacterium avium-intracellulare/diagnóstico , Infección por Mycobacterium avium-intracellulare/sangre , Infección por Mycobacterium avium-intracellulare/tratamiento farmacológico , Femenino , Masculino , Ácidos Nucleicos Libres de Células/sangre , Complejo Mycobacterium avium/genética , Complejo Mycobacterium avium/aislamiento & purificación , Anciano , Persona de Mediana Edad , ADN Bacteriano/sangre , ADN Bacteriano/análisis , Sensibilidad y Especificidad , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Estudios de Cohortes , Antibacterianos/uso terapéutico
17.
Nano Lett ; 24(27): 8418-8426, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38934472

RESUMEN

Optical multiplexing technology plays a crucial role in various fields such as data storage, anti-counterfeiting, and time-resolved biological imaging. Nevertheless, employing single-wavelength phosphorescence for multiplexing often results in spectral overlap among the emission peaks of various channels, which can precipitate crosstalk and misinterpretation in the information-decoding process, thereby compromising the integrity and precision of the encrypted data. This paper proposes a time-divided colorful multiplexing technology based on phosphorescent carbon nanodots with different colors and lifetimes. Using different luminescence colors to symbolize varying information levels helps achieve multitiered information encryption and storage. By modulation of the lifetime and the emission wavelength, intricate information can be encoded, thereby enhancing the intricacy and security of the encryption mechanism. By assigning different data bits to each color, more information can be encoded in the same physical space. This method enables higher-density information storage and fortifies encryption, ensuring the compactness and security of information.

18.
Plant J ; 114(1): 193-208, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36721966

RESUMEN

Iron (Fe) is an indispensable trace mineral element for the normal growth of plants, and it is involved in different biological processes; Fe shortage in plants can induce chlorosis and yield loss. The objective of this research is to identify novel genes that participated in the regulation of Fe-deficiency stress in Arabidopsis thaliana. A basic helix-loop-helix (bHLH) transcription factor (MYC1) was identified to be interacting with the FER-LIKE IRON DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) using a yeast-two-hybrid assay. Transcript-level analysis showed that there was a decrease in MYC1 expression in Arabidopsis to cope with Fe-deficiency stress. Functional deficiency of MYC1 in Arabidopsis leads to an increase in Fe-deficiency tolerance and Fe-accumulation, whereas MYC1-overexpressing plants have an enhanced sensitivity to Fe-deficiency stress. Additionally, MYC1 inhibited the formation of FIT and bHLH38/39 heterodimers, which suppressed the expressed level for Fe acquisition genes FRO2 and IRT1 during Fe-deficiency stress. These results showed that MYC1 functions as a negative modulator of the Fe-deficiency stress response by inhibiting the formation of FIT and bHLH38/39 heterodimers, thereby suppressing the binding of FIT and bHLH38/39 heterodimers to the promoters of FRO2 and IRT1 to modulate Fe intake during Fe-deficiency stress. Overall, the findings of this study elucidated the role of MYC1 in coping with Fe-deficiency stress, and provided potential targets for the developing of crop varieties resistant to Fe-deficiency stress.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Homeostasis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Raíces de Plantas/metabolismo
19.
Plant J ; 116(1): 161-172, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37381795

RESUMEN

Ovules are female reproductive organs of angiosperms, consisting of sporophytic integuments surrounding female gametophytes, that is, embryo sacs. Synchronization between integument growth and embryo sac development requires intracellular communication. However, signaling routes through which cells of the two generations communicate are unclear. We report that symplastic signals through plasmodesmata (PDs) of integuments are critical for the development of female gametophytes. Genetic interferences of PD biogenesis either by functional loss of CHOLINE TRANSPORTER-LIKE1 (CTL1) or by integument-specific expression of a mutated CALLOSE SYNTHASE 3 (cals3m) compromised PD formation in integuments and reduced fertility. Close examination of pINO:cals3m or ctl1 ovules indicated that female gametophytic development was either arrested at various stages after the formation of functional megaspores. In both cases, defective ovules could not attract pollen tubes, leading to the failure of fertilization. Results presented here demonstrate a key role of the symplastic route in sporophytic control of female gametophytic development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidad , Tubo Polínico/metabolismo
20.
BMC Genomics ; 25(1): 331, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565992

RESUMEN

BACKGROUND: The pig (Sus Scrofa) is one of the oldest domesticated livestock species that has undergone extensive improvement through modern breeding. European breeds have advantages in lean meat development and highly-productive body type, whereas Asian breeds possess extraordinary fat deposition and reproductive performance. Consequently, Eurasian breeds have been extensively used to develop modern commercial breeds for fast-growing and high prolificacy. However, limited by the sequencing technology, the genome architecture of some nascent developed breeds and the human-mediated impact on their genomes are still unknown. RESULTS: Through whole-genome analysis of 178 individuals from an Asian locally developed pig breed, Beijing Black pig, and its two ancestors from two different continents, we found the pervasive inconsistent gene trees and species trees across the genome of Beijing Black pig, which suggests its introgressive hybrid origin. Interestingly, we discovered that this developed breed has more genetic relationships with European pigs and an unexpected introgression from Asian pigs to this breed, which indicated that human-mediated introgression could form the porcine genome architecture in a completely different type compared to native introgression. We identified 554 genomic regions occupied 63.30 Mb with signals of introgression from the Asian ancestry to Beijing Black pig, and the genes in these regions enriched in pathways associated with meat quality, fertility, and disease-resistant. Additionally, a proportion of 7.77% of genomic regions were recognized as regions that have been under selection. Moreover, combined with the results of a genome-wide association study for meat quality traits in the 1537 Beijing Black pig population, two important candidate genes related to meat quality traits were identified. DNAJC6 is related to intramuscular fat content and fat deposition, and RUFY4 is related to meat pH and tenderness. CONCLUSIONS: Our research provides insight for analyzing the origins of nascent developed breeds and genome-wide selection remaining in the developed breeds mediated by humans during modern breeding.


Asunto(s)
Introgresión Genética , Estudio de Asociación del Genoma Completo , Humanos , Animales , Porcinos/genética , Genoma , Genómica/métodos , Cruzamiento , Polimorfismo de Nucleótido Simple , Sus scrofa/genética , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA