Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Angew Chem Int Ed Engl ; 61(9): e202114594, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34921480

RESUMEN

To reveal the biomedical effects and mechanisms of hydrogen molecules urgently needs hydrogen molecular imaging probes as an imperative tool, but the development of these probes is extremely challenging. A catalytic hydrogenation strategy is proposed to design and synthesize a ratiometric fluorescent probe by encapsulating Pd nanoparticles and conjugating azido-/coumarin-modified fluorophore into mesoporous silica nanoparticles, realizing in vitro and in vivo fluorescence imaging of hydrogen molecules. The developed hydrogen probe exhibits high sensitivity, rapid responsivity, high selectivity and low detection limit, enabling rapid and real-time detection of hydrogen molecules both in cells and in the body of animal and plant. By application of the developed fluorescent probe, we have directly observed the super-high transmembrane and ultrafast transport abilities of hydrogen molecules in cells, animals and plants, and discovered in vivo high diffusion of hydrogen molecules.


Asunto(s)
Colorantes Fluorescentes/química , Hidrógeno/análisis , Imagen Molecular , Animales , Azidas/química , Cumarinas/química , Colorantes Fluorescentes/síntesis química , Humanos , Paladio/química , Dióxido de Silicio/química , Factores de Tiempo
2.
J Nanobiotechnology ; 19(1): 321, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34649589

RESUMEN

BACKGROUND: Photothermal therapy (PTT) frequently cause thermal resistance in tumor cells by inducing the heat shock response, limiting its therapeutic effect. Hydrogen sulfide (H2S) with appropriate concentration can reverse the Warburg effect in cancer cells. The combination of PTT with H2S gas therapy is expected to achieve synergistic tumor treatment. METHODS: Here, sulourea (Su) is developed as a thermosensitive/hydrolysable H2S donor to be loaded into Pd nanocubes through in-depth coordination for construction of the Pd-Su nanomedicine for the first time to achieve photo-controlled H2S release, realizing the effective combination of photothermal therapy and H2S gas therapy. RESULTS: The Pd-Su nanomedicine shows a high Su loading capacity (85 mg g-1), a high near-infrared (NIR) photothermal conversion efficiency (69.4%), and NIR-controlled H2S release by the photothermal-triggered hydrolysis of Su. The combination of photothermal heating and H2S produces a strong synergetic effect by H2S-induced inhibition of heat shock response, thereby effectively inhibiting tumor growth. Moreover, high intratumoral accumulation of the Pd-Su nanomedicine after intravenous injection also enables photothermal/photoacoustic dual-mode imaging-guided tumor treatment. CONCLUSIONS: The proposed NIR-responsive heat/H2S release strategy provides a new approach for effective cancer therapy.


Asunto(s)
Sulfuro de Hidrógeno/química , Nanopartículas del Metal/química , Nanomedicina/métodos , Paladio/química , Terapia Fototérmica/métodos , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Femenino , Sulfuro de Hidrógeno/uso terapéutico , Rayos Infrarrojos , Nanopartículas del Metal/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Paladio/uso terapéutico
3.
Bioconjug Chem ; 25(9): 1655-63, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25109612

RESUMEN

This paper reported a core-shell nanotheranostic agent by growing Prussian blue (PB) nanoshells of 3-6 nm around superparamagnetic Fe3O4 nanocores for targeted photothermal therapy of cancer under magnetic resonance imaging (MRI) guidance. Both in vitro and in vivo experiments proved that the Fe3O4@PB core-shell nanoparticles showed significant contrast enhancement for T2-weighted MRI with the relaxivity value of 58.9 mM(-1)·s(-1). Simultaneously, the composite nanoparticles exhibited a high photothermal effect under irradiation of a near-infrared laser due to the strong absorption of PB nanoshells, which led to more than 80% death of HeLa cells with only 0.016 mg·mL(-1) of the nanoparticles with the aid of the magnetic targeting effect. Using tumor-bearing nude mice as the model, the near-infrared laser light ablated the tumor effectively in the presence of the Fe3O4@PB nanoparticles and the tumor growth inhibition was evaluated to be 87.2%. Capabilities of MRI, magnetic targeting, and photothermal therapy were thus integrated into a single agent to allow efficient MRI-guided targeted photothermal therapy. Most importantly, both PB and Fe3O4 nanoparticles were already clinically approved drugs, so the Fe3O4@PB nanoparticles as a theranostic nanomedicine would be particularly promising for clinical applications in the human body due to the reliable biosafety.


Asunto(s)
Ferrocianuros/química , Imagen por Resonancia Magnética/métodos , Nanopartículas de Magnetita/uso terapéutico , Radioterapia Guiada por Imagen/métodos , Animales , Células HeLa , Humanos , Nanopartículas de Magnetita/química , Ratones
4.
Nat Commun ; 15(1): 3857, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719843

RESUMEN

Systematical and critical learning from industrial catalysis will bring inspiration for emerging nanocatalytic medicine, but the relevant knowledge is quite limited so far. In this review, we briefly summarize representative catalytic reactions and corresponding catalysts in industry, and then distinguish the similarities and differences in catalytic reactions between industrial and medical applications in support of critical learning, deep understanding, and rational designing of appropriate catalysts and catalytic reactions for various medical applications. Finally, we summarize/outlook the present and potential translation from industrial catalysis to nanocatalytic medicine. This review is expected to display a clear picture of nanocatalytic medicine evolution.


Asunto(s)
Nanomedicina , Catálisis , Humanos , Nanomedicina/métodos , Industrias , Nanotecnología/métodos
5.
Chemistry ; 19(47): 16113-21, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24123292

RESUMEN

This paper reports the facile design and synthesis of a series of lipidic organoalkoxysilanes with different numbers of triethoxysilane headgroups and hydrophobic alkyl chains linked by glycerol and pentaerythritol for the construction of cerasomes with regulated surface siloxane density and controlled release behavior. It was found that the number of triethoxysilane headgroups affected the properties of the cerasomes for encapsulation efficiency, drug loading capacity, and release behavior. For both water-soluble doxorubicin (DOX) and water-insoluble paclitaxel (PTX), the release rate from the cerasomes decreased as the number of triethoxysilane headgroups increased. The slower release rate from the cerasomes was attributed to the higher density of the siloxane network on the surface of the cerasomes, which blocks the drug release channels. In contrast to the release results with DOX, the introduction of one more hydrophobic alkyl chain into the cerasome-forming lipid resulted in a slower release rate of PTX from the cerasomes due to the formation of a more compact cerasome bilayer. An MTT viability assay showed that all of these drug-loaded cerasomes inhibited proliferation of the HepG2 cancer cell line. The fine tuning of the chemical structure of the cerasome-forming lipids would foster a new strategy to precisely regulate the release rate of drugs from cerasomes.


Asunto(s)
Liposomas/química , Nanoestructuras/química , Silanos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Preparaciones de Acción Retardada , Doxorrubicina/química , Doxorrubicina/farmacología , Glicerol/química , Células Hep G2 , Células Endoteliales de la Vena Umbilical Humana , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Paclitaxel/química , Paclitaxel/farmacología , Glicoles de Propileno/química , Silanos/síntesis química
6.
Adv Sci (Weinh) ; 10(28): e2303016, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37587791

RESUMEN

Tumor heterogeneity makes routine drugs difficult to penetrate solid tumors, limiting their therapy efficacies. Based on high tissue penetrability of hydrogen molecules (H2 ) and ultrasound (US) and the immunomodulation effects of H2 and lactic acid (LA), this work proposes a novel strategy of US-driven piezoelectrocatalytic tumor immunoactivation for high-efficacy therapy of deep tumors by piezoelectrocatalytic hydrogen generation and LA deprivation. A kind of US-responsive piezoelectric SnS nanosheets (SSN) is developed to realize US-triggered local hydrogen production and simultaneous LA deprivation in deep tumors. The proof-of-concept experiments which are executed on an orthotopic liver cancer model have verified that intratumoral SSN-medicated piezoelectrocatalytically generated H2 liberates effector CD8+ T cells from the immunosuppression of tumor cells through down-regulating PD-L1 over-expression, and simultaneous LA deprivation activates CD8+ T cells by inhibiting regulatory T cells, efficiently co-activating tumor immunity and achieving a high outcome of liver tumor therapy with complete tumor eradication and 100% mice survival. The proposed strategy of US-driven piezoelectrocatalytic tumor immunoactivation opens a safe and efficient pathway for deep tumor therapy.

7.
Biomaterials ; 296: 122090, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36940634

RESUMEN

Therapeutic gas molecules have high tissue penetrability, but their sustainable supply and controlled release in deep tumor is a huge challenge. In this work, a concept of sonocatalytic full water splitting for hydrogen/oxygen immunotherapy of deep tumor is proposed, and a new kind of ZnS nanoparticles with a mesocrystalline structure (mZnS) is developed to achieve highly efficient sonocatalytic full water splitting for sustainable supply of H2 and O2 in tumor, achieving a high efficacy of deep tumor therapy. Mechanistically, locally generated hydrogen and oxygen molecules exhibit a tumoricidal effect as well as the co-immunoactivation of deep tumors through inducing the M2-to-M1 repolarization of intratumoral macrophages and the tumor hypoxia relief-mediated activation of CD8+ T cells, respectively. The proposed sonocatalytic immunoactivation strategy will open a new window to realize safe and efficient treatment of deep tumors.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Agua , Linfocitos T CD8-positivos , Nanopartículas/química , Neoplasias/terapia , Oxígeno/uso terapéutico , Hidrógeno/uso terapéutico , Línea Celular Tumoral , Microambiente Tumoral
8.
Natl Sci Rev ; 10(5): nwad063, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37056424

RESUMEN

It is a great challenge to effectively eradicate biofilm and cure biofilm-infected diseases because dense extracellular polymeric substance matrix prevents routine antibacterial agents from penetrating into biofilm. H2 is an emerging energy-regulating molecule possessing both high biosafety and high tissue permeability. In this work, we propose a concept of sonocatalytic hydrogen/hole-combined 'inside/outside-cooperation' anti-biofilm for promoting bacteria-infected diabetic wound healing based on two-dimensional piezoelectric nanomaterials. Proof-of-concept experiments using C3N4 nanosheets as a representative piezoelectric catalyst with wide band gap and high biosafety have verified that sonocatalytically generated H2 and holes rapidly penetrate into biofilm to inhibit bacterial energy metabolism and oxidatively deprive polysaccharides/NADH in biofilm to destroy the bacterial membrane/electron transport chain, respectively, inside/outside-cooperatively eradicating biofilm. A bacteria-infected diabetic wound model is used to confirm the excellent in vivo antibacterial performance of sonocatalytic hydrogen/hole-combined therapy, remarkably improving bacteria-infected diabetic wound healing. The proposed strategy of sonocatalytic hole/hydrogen-combined 'inside/outside-cooperation' will make a highway for treatment of deep-seated biofilm infection.

9.
Bioact Mater ; 12: 303-313, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35128178

RESUMEN

Tumor-targeted delivery of nanomedicine is of great importance to improve therapeutic efficacy of cancer and minimize systemic side effects. Unfortunately, nowadays the targeting efficiency of nanomedicine toward tumor is still quite limited and far from clinical requirements. In this work, we develop an innovative peptide-based nanoparticle to realize light-triggered nitric oxide (NO) release and structural transformation for enhanced intratumoral retention and simultaneously sensitizing photodynamic therapy (PDT). The designed nanoparticle is self-assembled from a chimeric peptide monomer, TPP-RRRKLVFFK-Ce6, which contains a photosensitive moiety (chlorin e6, Ce6), a ß-sheet-forming peptide domain (Lys-Leu-Val-Phe-Phe, KLVFF), an oligoarginine domain (RRR) as NO donor and a triphenylphosphonium (TPP) moiety for targeting mitochondria. When irradiated by light, the constructed nanoparticles undergo rapid structural transformation from nanosphere to nanorod, enabling to achieve a significantly higher intratumoral accumulation by 3.26 times compared to that without light irradiation. More importantly, the conversion of generated NO and reactive oxygen species (ROS) in a light-responsive way to peroxynitrite anions (ONOO-) with higher cytotoxicity enables NO to sensitize PDT in cancer treatment. Both in vitro and in vivo studies demonstrate that NO sensitized PDT based on the well-designed transformable nanoparticles enables to eradicate tumors efficiently. The light-triggered transformable nanoplatform developed in this work provides a new strategy for enhanced intratumoral retention and improved therapeutic outcome.

10.
Acta Biomater ; 94: 447-458, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31055124

RESUMEN

We developed a modular approach for the preparation of nanoparticle-supported polymer brushes carrying repeating iminodiacetate units for affinity separation of histidine-tagged recombinant proteins. The nanoparticle-supported polymer brushes were prepared via the combination of surface-initiated atom transfer radical polymerization with Cu(I)-catalyzed azide-alkyne cycloaddition reaction. The nanocomposite materials were characterized to determine the particle size, morphology, organic content, densities of polymer chains and the affinity ligand. Protein binding assay illustrated that the iminodiacetate-rich polymer brushes enable to selectively bind histidine-tagged recombinant proteins in the presence of abundant interfering proteins. More importantly, the protein binding capacity can be tuned by adjusting the environmental temperature. STATEMENT OF SIGNIFICANCE: The nanoparticle core-polymer brush structure enables selective binding of histidine-tagged recombinant proteins via multiple metal-coordination interactions. The soft and flexible structure of the polymer brushes was found beneficial for lowering the steric hindrance in protein binding. Taking advantage of the conformational changes of the polymer brushes at different temperatures, it is possible to modulate the protein binding on the nanocomposite by adjusting the environmental temperature. In general, the iminodiacetate-rich core-brush nano adsorbents are attractive for purifying histidine-tagged recombinant proteins practically. The synthetic approach reported here may be expanded to develop other advanced functional materials for applications in various biomedical fields ranging from biosensors to drug delivery.


Asunto(s)
Histidina/química , Calor , Nanopartículas/química , Polímeros/química , Proteínas Recombinantes de Fusión/química , Reacción de Cicloadición , Proteínas Inmovilizadas/química
11.
Polymers (Basel) ; 11(1)2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30960157

RESUMEN

Glycoproteins represent a group of important biomarkers for cancer and other life-threatening diseases. Selective detection of specific glycoproteins is an important step for early diagnosis. Traditional glycoprotein assays are mostly based on lectins, antibodies, and enzymes, biochemical reagents that are costly and require special cold chain storage and distribution. To address the shortcomings of the existing glycoprotein assays, we propose a new approach using protein-imprinted nanoparticles to replace the traditional lectins and antibodies. Protein-imprinted binding sites were created on the surface of silica nanoparticles by copolymerization of dopamine and aminophenylboronic acid. The imprinted nanoparticles were systematically characterized by dynamic light scattering, scanning and transmission electron microscopy, thermogravimetric analysis, Fourier transform infrared spectroscopy, and elemental analysis. A boronic acid-modified fluorescent probe was used to detect the target glycoprotein captured by the imprinted nanoparticles. Using horseradish peroxidase as a model glycoprotein, we demonstrated that the proposed method can be applied to detect target protein containing multiple glycosylation sites. Because of their outstanding stability and low cost, imprinted nanoparticles and synthetic probes are attractive replacements of traditional biochemical reagents to develop simpler, faster, and more cost-effective analytical methods for glycoproteins.

12.
J Colloid Interface Sci ; 509: 463-471, 2018 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-28923744

RESUMEN

Manipulation of specific binding and recycling of materials are two important aspects for practical applications of molecularly imprinted polymers. In this work, we developed a new approach to control the dynamic assembly of molecularly imprinted nanoparticles by surface functionalization. Molecularly imprinted polymer nanoparticles with a well-controlled core-shell structure were synthesized using precipitation polymerization. The specific binding sites were created in the core during the first step imprinting reaction. In the second polymerization step, epoxide groups were introduced into the particle shell to act asan intermediate linker to immobilize phenylboronic acids, as well as to introduce cis-diol structures on surface. The imprinted polymer nanoparticles modified with boronic acid and cis-diol structures maintained high molecular binding specificity, and the nanoparticles could be induced to form dynamic particle aggregation that responded to pH variation and chemical stimuli. The possibility of modulating molecular binding and nanoparticle assembly in a mutually independent fashion can be exploited in a number of applications where repeated use of precious nanoparticles is needed.

13.
J Mater Chem B ; 6(22): 3770-3781, 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-32254839

RESUMEN

In this work, we synthesized a series of nanoparticle-supported boronic acid polymer brushes for affinity separation of glycoproteins. Polymer brushes were prepared by surface-initiated atom transfer radical polymerization of glycidyl methacrylate and N-isopropylacrylamide, followed by stepwise modification of the pendant as well as the end functional groups to introduce boronic acid moieties through a Cu(i)-catalyzed alkyne-azide cycloaddition reaction. We investigated the impact of the polymer structure on glycoprotein binding under different pH and temperature conditions, and established new methods that allow glycoproteins to be more easily isolated and recovered with minimal alteration in solvent composition. Our experimental results suggest that for the separation of glycoproteins, terminal boronic acids located at the end of polymer chains play the most important role. The thermo-responsibility of the new affinity adsorbents, in addition to the high capacity for glycoprotein binding (120 mg ovalbumin per g adsorbent), provides a convenient means to realize simplified bioseparation not only for glycoproteins, but also for other carbohydrate-containing biological molecules.

14.
ACS Appl Mater Interfaces ; 9(10): 8985-8995, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28240025

RESUMEN

In this report, we present a novel modular approach to the immobilization of a high density of boronic acid ligands on thermoresponsive block copolymer brushes for effective enrichment of glycoproteins via their synergistic multiple covalent binding with the immobilized boronic acids. Specifically, a two-step, consecutive surface-initiated atom transfer radical polymerization (SI-ATRP) was employed to graft a flexible block copolymer brush, pNIPAm-b-pGMA, from an initiator-functionalized nanosilica surface, followed by postpolymerization modification of the pGMA moiety with sodium azide. Subsequently, an alkyne-tagged boronic acid (PCAPBA) was conjugated to the polymer brush via a Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction, leading to a silica-supported polymeric hybrid material, Si@pNIPAm-b-pBA, with a potent glycol binding affinity. The obtained core-brush nanocomposite was systematically characterized with regard to particle size, morphology, organic content, brush density, and number of immobilized boronic acids. We also studied the characteristics of glycoprotein binding of the nanocomposite under different conditions. The nanocomposite showed high binding capacities for ovalbumin (OVA) (98.0 mg g-1) and horseradish peroxidase (HRP) (26.8 mg g-1) in a basic buffer (pH 9.0) at 20 °C. More importantly, by adjusting the pH and temperature, the binding capacities of the nanocomposite can be tuned, which is meaningful for the separation of biological molecules. In general, the synthetic approach developed for the fabrication of block copolymer brushes in the nanocomposite opened new opportunities for the design of more functional hybrid materials that will be useful in bioseparation and biomedical applications.


Asunto(s)
Nanocompuestos , Glicoproteínas , Concentración de Iones de Hidrógeno , Polimerizacion , Polímeros , Propiedades de Superficie , Temperatura
15.
J Mater Chem B ; 4(19): 3247-3256, 2016 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32263260

RESUMEN

Boronic acid based affinity materials are of great importance for effective enrichment of biomolecules containing a cis-diol structure, for example glycoproteins. In this work, we developed a new pH- and temperature-responsive boronate affinity material for effective separation of glycoproteins. A nanohybrid material composed of silica cores and flexible polymer brushes, denoted as Si@poly(NIPAm-co-GMA)@APBA, was prepared via surface-initiated atom transfer radical polymerization (SI-ATRP) in combination with Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) click reaction. The size, morphology and composition of the obtained nanohybrid were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and thermogravimetric analysis (TGA). The density of polymer brushes on the surface of silica nanoparticles was determined to be 0.7 molecules per nm2. The maximum binding capacities of the nanohybrid Si@poly(NIPAm-co-GMA)@APBA for ovalbumin (OVA) and horseradish peroxidase (HRP) were determined to be 87.6 mg g-1 and 22.8 mg g-1, respectively. Glycoprotein binding on the nanohybrid could be controlled by varying the pH of the binding buffer. By increasing the temperature from 20 °C to 35 °C, glycoprotein binding onto the nanohybrid was decreased. This new pH- and temperature-responsive nanohybrid will be useful for a number of biotechnological and biomedical applications, for example, for protein separation and drug delivery.

16.
ACS Nano ; 9(2): 1280-93, 2015 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-25599568

RESUMEN

The high intensity focused ultrasound (HIFU) and thermosensitive cerasomes (HTSCs) were successfully assembled by employing cerasome-forming lipid (CFL) in combination with the component lipids of conventional low temperature sensitive liposomes (LTSLs) including 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (DSPE-PEG-2000) and 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine (MSPC). The HTSCs showed spherical shape with a mean diameter around 200 nm, exhibiting good biocompatibility. Both hydrophilic and lipophilic drugs can be efficiently encapsulated into HTSCs. In addition, the release rate of HTSCs could be conveniently adjusted by varying the molar ratios of CFL to DPPC. The drug loaded HTSCs showed much longer blood circulation time (half-life >8.50 ± 1.49 h) than conventional LTSLs (0.92 ± 0.17 h). An in vitro study demonstrated that the drug loaded HTSCs are highly stable at 37 °C and show a burst release at 42 °C, providing a capability to act synergistically against tumors. We found that the HTSCs with a proportion of 43.25% of CFL could release more than 90% hydrophilic drugs in 1 min at an elevated temperature of 42 °C generated by HIFU exposure. After intravenous injection of doxorubicin (DOX) loaded HTSCs at 5 mg DOX/kg, followed by double HIFU sonication, the tumor growth of the adenocarcinoma (MDA-MB-231) bearing mice could be significantly inhibited. Therefore, the drug loaded HTSCs combined with HIFU hold great potential for efficient local chemotherapy of cancer due to the ability to deliver high concentration of chemotherapy drugs directly to the tumor, achieve maximum therapeutic efficacy and minimal side effects, and avoid the damage to the healthy tissues caused by systemic administration of drugs.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/química , Materiales Biocompatibles/química , Nanoestructuras/química , Neoplasias/tratamiento farmacológico , Temperatura , Ondas Ultrasónicas , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Materiales Biocompatibles/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/administración & dosificación , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Liberación de Fármacos , Estabilidad de Medicamentos , Femenino , Glicerofosfolípidos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Membrana Dobles de Lípidos/química , Liposomas , Ratones , Modelos Moleculares , Conformación Molecular , Nanoestructuras/toxicidad , Neoplasias/patología , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA