Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2314349121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442174

RESUMEN

Thrombosis, induced by abnormal coagulation or fibrinolytic systems, is the most common pathology associated with many life-threatening cardio-cerebrovascular diseases. However, first-line anticoagulant drugs suffer from rapid drug elimination and risk of hemorrhagic complications. Here, we developed an in situ formed depot of elastin-like polypeptide (ELP)-hirudin fusion protein with a prodrug-like feature for long-term antithrombotic therapy. Highly secretory expression of the fusion protein was achieved with the assistance of the Ffu312 tag. Integration of hirudin, ELP, and responsive moiety can customize fusion proteins with properties of adjustable in vivo retention and controllable recovery of drug bioactivity. After subcutaneous injection, the fusion protein can form a reservoir through temperature-induced coacervation of ELP and slowly diffuse into the blood circulation. The biological activity of hirudin is shielded due to the N-terminal modification, while the activated key proteases upon thrombus occurrence trigger the cleavage of fusion protein together with the release of hirudin, which has antithrombotic activity to counteract thrombosis. We substantiated that the optimized fusion protein produced long-term antithrombotic effects without the risk of bleeding in multiple animal thrombosis models.


Asunto(s)
Polipéptidos Similares a Elastina , Trombosis , Animales , Fibrinolíticos/farmacología , Hirudinas/genética , Hirudinas/farmacología , Anticoagulantes , Trombosis/tratamiento farmacológico , Trombosis/prevención & control
2.
Horm Metab Res ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565184

RESUMEN

The main purpose of this article is to explore the relationship between autophagy and the pathological mechanism of PCOS, and to find potential therapeutic methods that can alleviate the pathological mechanism of PCOS by targeting autophagy. Relevant literatures were searched in the following databases, including: PubMed, MEDLINE, Web of Science, Scopus. The search terms were "autophagy", "PCOS", "polycystic ovary syndrome", "ovulation", "hyperandrogenemia", "insulin resistance", "inflammatory state", "circadian rhythm" and "treatment", which were combined according to the retrieval methods of different databases. Through analysis, we uncovered that abnormal levels of autophagy were closely related to abnormal ovulation, insulin resistance, hyperandrogenemia, and low-grade inflammation in patients with PCOS. Lifestyle intervention, melatonin, vitamin D, and probiotics, etc. were able to improve the pathological mechanism of PCOS via targeting autophagy. In conclusion, autophagy disorder is a key pathological mechanism in PCOS and is also a potential target for drug development and design.

3.
Arch Gynecol Obstet ; 302(2): 293-303, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32556514

RESUMEN

Autophagy exists widely in eukaryotic cells and is regulated by a variety of molecular mechanisms. Its physiological functions include providing energy, maintaining cell homeostasis, and promoting apoptosis of abnormal cells. At present, the regulation of autophagy in tumor, degenerative disease, and cardiovascular disease has attracted much attention. Gradually, the role of autophagy in pregnancy tends to be valued. The previous literature has shown that autophagy can influence the occurrence and maintenance of pregnancy from three aspects: embryo (affecting the process of fertilization and embryonic development and the function of trophoblast cells), maternal (decidualization), and maternal-to-fetal immune crosstalk. Undoubtedly, abnormalities in autophagy levels are associated with a variety of pregnancy complications, such as preeclampsia, fetal growth restriction, and preterm delivery which have been proven by human, animal, and in vitro experiments. The regulation of autophagy is expected to be a target for the treatment of these pregnancy complications. This article reviews the research on autophagy, especially about its physiological and pathological regulation during pregnancy.


Asunto(s)
Autofagia/fisiología , Preeclampsia/patología , Trofoblastos/fisiología , Animales , Desarrollo Embrionario , Femenino , Retardo del Crecimiento Fetal/patología , Humanos , Embarazo , Nacimiento Prematuro
4.
Appl Microbiol Biotechnol ; 102(17): 7455-7464, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29968036

RESUMEN

High level expression of penicillin G acylase (PGA) in Escherichia coli is generally constricted by a complex maturation process and multiple limiting steps. In this study, three PGAs isolated from Providencia rettgeri (PrPGA), Alcaligenes faecalis (AfPGA), and Achromobacter xylosoxidans (AxPGA) were efficiently expressed in E. coli by replacing with applicable signal peptide. Different bottlenecks of the expression process were analyzed for PrPGA, AfPGA, and AxPGA. Subsequently, five efficient signal peptides, including OmpA, pelB, Lpp, PhoA, and MalE, were used to replace the original signal peptides of the PGAs. With respect to AfPGA and AxPGA, translocation was the primary limitation, and the use of pelB signal peptide effectively overcame this barrier. For PrPGA, which was almost not expressed in wild type, the translation initiation efficiency was optimized by replacing with MalE signal peptide. In addition, low temperature (20 °C) slowed down the transcription and translation, thereby facilitating the posttranslational process and preventing the formation of inclusion bodies. Furthermore, combined induction with IPTG and arabinose not only enhanced the cell density but also remarkably improved the expression of PGAs. Final specific activities of the three PGAs reached 2100 (PrPGA), 9200 (AfPGA), and 1400 (AxPGA) U/L/OD600, respectively. This simple and robust strategy by fitting replacement of signal peptide might dramatically improve the expression of PGAs from various bacteria, which was significant in the production of many valuable ß-lactam antibiotics.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Microbiología Industrial/métodos , Penicilina Amidasa/genética , Señales de Clasificación de Proteína/genética , Achromobacter denitrificans/enzimología , Achromobacter denitrificans/genética , Alcaligenes faecalis/enzimología , Alcaligenes faecalis/genética , Escherichia coli/genética , Providencia/enzimología , Providencia/genética
5.
Nano Lett ; 17(12): 7447-7454, 2017 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-29172544

RESUMEN

Oligopeptide hydrogels for localized protein delivery have considerable potential to reduce systemic side effects but maximize therapeutic efficacy. Although enzyme catalysis to induce formation of oligopeptide hydrogels has the merits of unique regio- and enantioselectivity and mild reaction conditions, it may cause the impairment of function and activity of the encapsulated proteins by proteolytic degradation during gelation. Here we report a novel enzyme-catalysis strategy for self-assembly of oligopeptide hydrogels using an engineered protease nanocapsule with tunable substrate selectivity. The protease-encapsulated nanocapsule shielded the degradation activity of protease on the laden proteins due to the steric hindrance by the polymeric shell weaved around the protease, whereas the small-molecular precursors were easier to penetrate across the polymeric network and access the catalytic pocket of the protease to convert to the gelators for self-assembling hydrogel. The resulting oligopeptide hydrogels supported a favorable loading capacity without inactivation of both an antiangiogenic protein, hirudin and an apoptosis-inducing cytokine, TRAIL as model proteins. The hirudin and TRAIL coloaded oligopeptide hydrogel for combination cancer treatment showed enhanced synergistic antitumor effects both in vitro and in vivo.


Asunto(s)
Portadores de Fármacos/química , Nanopartículas/química , Oligopéptidos/química , Péptido Hidrolasas/química , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/química , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/química , Cápsulas , Catálisis , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Citocinas/administración & dosificación , Citocinas/química , Liberación de Fármacos , Hirudinas/administración & dosificación , Hirudinas/química , Humanos , Hidrogeles , Ratones , Trasplante de Neoplasias , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Ligando Inductor de Apoptosis Relacionado con TNF/química , Trombina/administración & dosificación , Trombina/química
6.
Microb Cell Fact ; 16(1): 231, 2017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29268791

RESUMEN

BACKGROUND: The high level of excretion and rapid folding ability of ß-fructofuranosidase (ß-FFase) in Escherichia coli has suggested that ß-FFase from Arthrobacter arilaitensis NJEM01 can be developed as a fusion partner. METHODS: Based on the modified Wilkinson and Harrison algorithm and the preliminary verification of the solubility-enhancing ability of ß-FFase truncations, three ß-FFase truncations (i.e., Ffu209, Ffu217, and Ffu312) with a native signal peptide were selected as novel Ffu fusion tags. Four difficult-to-express protein models; i.e., CARDS TX, VEGFR-2, RVs and Omp85 were used in the assessment of Ffu fusion tags. RESULTS: The expression levels and solubility of each protein were markedly enhanced by the Ffu fusion system. Each protein had a favorable Ffu tag. The Ffu fusion tags performed preferably when compared with the well-known fusion tags MBP and NusA. Strikingly, it was confirmed that Ffu fusion proteins were secreted into the periplasm by the periplasmic analysis and N-amino acid sequence analysis. Further, efficient excretion of HV3 with defined anti-thrombin activity was obtained when it was fused with the Ffu312 tag. Moreover, HV3 remained soluble and demonstrated notable anti-thrombin activity after the removal of the Ffu312 tag by enterokinase. CONCLUSIONS: Observations from this work not only complements fusion technologies, but also develops a novel and effective secretory system to solve key issues that include inclusion bodies and degradation when expressing heterologous proteins in E. coli, especially for proteins that require disulfide bond formation, eukaryotic-secreted proteins, and membrane-associated proteins.


Asunto(s)
Arthrobacter/enzimología , Proteínas Bacterianas/metabolismo , Escherichia coli/genética , Expresión Génica , beta-Fructofuranosidasa/metabolismo , Arthrobacter/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Clonación Molecular , Escherichia coli/metabolismo , Señales de Clasificación de Proteína , Transporte de Proteínas , Solubilidad , beta-Fructofuranosidasa/química , beta-Fructofuranosidasa/genética
7.
Nano Lett ; 16(2): 1118-26, 2016 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-26785163

RESUMEN

Protein therapy has been considered the most direct and safe approach to treat cancer. Targeting delivery of extracellularly active protein without internalization barriers, such as membrane permeation and endosome escape, is efficient and holds vast promise for anticancer treatment. Herein, we describe a "transformable" core-shell based nanocarrier (designated CS-NG), which can enzymatically assemble into microsized extracellular depots at the tumor site with assistance of hyaluronidase (HAase), an overexpressed enzyme at the tumor microenvironment. Equipped with an acid-degradable modality, the resulting CS-NG can substantially release combinational anticancer drugs-tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL) and antiangiogenic cilengitide toward the membrane of cancer cells and endothelial cells at the acidic tumor microenvironment, respectively. Enhanced cytotoxicity on MDA-MB-231 cells and improved antitumor efficacy were observed using CS-NG, which was attributed to the inhibition of cellular internalization and prolonged retention time in vivo.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Técnicas de Transferencia de Gen , Venenos de Serpiente/administración & dosificación , Ligando Inductor de Apoptosis Relacionado con TNF/administración & dosificación , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/química , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/química , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/genética , Línea Celular Tumoral , Permeabilidad de la Membrana Celular/efectos de los fármacos , Endosomas/efectos de los fármacos , Humanos , Hialuronoglucosaminidasa/biosíntesis , Hialuronoglucosaminidasa/química , Ratones , Venenos de Serpiente/química , Microambiente Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Chem Soc Rev ; 43(10): 3595-629, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24626293

RESUMEN

Insulin is essential for type 1 and advanced type 2 diabetics to maintain blood glucose levels and prolong lives. The traditional administration requires frequent subcutaneous insulin injections that are associated with poor patient compliance, including pain, local tissue necrosis, infection, and nerve damage. Taking advantage of emerging micro- and nanotechnologies, numerous alternative strategies integrated with chemical approaches for insulin delivery have been investigated. This review outlines recent developments in the controlled delivery of insulin, including oral, nasal, pulmonary, transdermal, subcutaneous and closed-loop insulin delivery. Perspectives from new materials, formulations and devices at the micro- or nano-scales are specifically surveyed. Advantages and limitations of current delivery methods, as well as future opportunities and challenges are also discussed.


Asunto(s)
Sistemas de Liberación de Medicamentos , Sistemas de Infusión de Insulina , Insulina/administración & dosificación , Nanotecnología/instrumentación , Diabetes Mellitus/tratamiento farmacológico , Diseño de Equipo , Humanos , Insulina/uso terapéutico
9.
J Am Chem Soc ; 136(42): 14722-5, 2014 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-25336272

RESUMEN

A bioinspired cocoon-like anticancer drug delivery system consisting of a deoxyribonuclease (DNase)-degradable DNA nanoclew (NCl) embedded with an acid-responsive DNase I nanocapsule (NCa) was developed for targeted cancer treatment. The NCl was assembled from a long-chain single-stranded DNA synthesized by rolling-circle amplification (RCA). Multiple GC-pair sequences were integrated into the NCl for enhanced loading capacity of the anticancer drug doxorubicin (DOX). Meanwhile, negatively charged DNase I was encapsulated in a positively charged acid-degradable polymeric nanogel to facilitate decoration of DNase I into the NCl by electrostatic interactions. In an acidic environment, the activity of DNase I was activated through the acid-triggered shedding of the polymeric shell of the NCa, resulting in the cocoon-like self-degradation of the NCl and promoting the release of DOX for enhanced therapeutic efficacy.


Asunto(s)
Antineoplásicos/química , ADN/química , ADN/metabolismo , Doxorrubicina/química , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Nanopartículas/química , Antineoplásicos/farmacología , Desoxirribonucleasas/metabolismo , Doxorrubicina/farmacología , Liberación de Fármacos , Humanos , Células MCF-7 , Modelos Moleculares , Conformación Molecular
10.
Angew Chem Int Ed Engl ; 53(23): 5815-20, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24764317

RESUMEN

A liposome-based co-delivery system composed of a fusogenic liposome encapsulating ATP-responsive elements with chemotherapeutics and a liposome containing ATP was developed for ATP-mediated drug release triggered by liposomal fusion. The fusogenic liposome had a protein-DNA complex core containing an ATP-responsive DNA scaffold with doxorubicin (DOX) and could release DOX through a conformational change from the duplex to the aptamer/ATP complex in the presence of ATP. A cell-penetrating peptide-modified fusogenic liposomal membrane was coated on the core, which had an acid-triggered fusogenic potential with the ATP-loaded liposomes or endosomes/lysosomes. Directly delivering extrinsic liposomal ATP promoted the drug release from the fusogenic liposome in the acidic intracellular compartments upon a pH-sensitive membrane fusion and anticancer efficacy was enhanced both in vitro and in vivo.


Asunto(s)
Adenosina Trifosfato/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Liposomas/metabolismo , Nanomedicina/métodos , Animales , Humanos , Células MCF-7 , Ratones
11.
JACS Au ; 4(2): 454-464, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38425912

RESUMEN

Nucleoside phosphorylases (NPs) are the key enzymes in the nucleoside metabolism pathway and are widely employed for the synthesis of nucleoside analogs, which are difficult to access via conventional synthetic methods. NPs are generally classified as purine nucleoside phosphorylase (PNP) and pyrimidine or uridine nucleoside phosphorylase (PyNP/UP), based on their substrate preference. Here, based on the evolutionary information on the NP-I family, we adopted an insertions-deletions (InDels) strategy to engineer the substrate promiscuity of nucleoside phosphorylase AmPNPΔS2V102 K, which exhibits both PNP and UP activities from a trimeric PNP (AmPNP) of Aneurinibacillus migulanus. Furthermore, the AmPNPΔS2V102 K exerted phosphorylation activities toward arabinose nucleoside, fluorosyl nucleoside, and dideoxyribose, thereby broadening the unnatural-ribose nucleoside substrate spectrum of AmPNP. Finally, six purine nucleoside analogues were successfully synthesized, using the engineered AmPNPΔS2V102 K instead of the traditional "two-enzymes PNP/UP" approach. These results provide deep insights into the catalytic mechanisms of the PNP and demonstrate the benefits of using the InDels strategy to achieve substrate promiscuity in an enzyme, as well as broadening the substrate spectrum of the enzyme.

12.
Pharmazie ; 68(1): 47-53, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23444780

RESUMEN

The aim of this study was to investigate the cytotoxicity of paclitaxel solid lipid nanoparticles (SLN) modified with stearic acid octaarginine (SA-R8-PTX-SLN) as well as the cellular uptake of coumarin-6-loaded SLN modified with SA-R8 (SA-R8-C6-SLN) in human lung cancer cells, A549. SLN were prepared using a film dispersion method; and then their particle size, zeta potential, morphology, bound efficiency of SAR8, drug loading efficiency, and in vitro release were characterized. SA-R8-PTX-SLN and SA-R8-C6-SLN were incubated with A549 cells to measure their cytotoxicity and cellular uptake, respectively. The results indicated that the cytotoxicity of SA-R8-PTX-SLN was enhanced significantly with the increasing amount of SA-R8 and the cellular uptakes of SLN increased with the incubated concentrations and the incubated time of SLN. In contrast, SA-R8-SLN could significantly enhance the cellular uptake of SLN and the cytotoxicity of PTX in A549 cells. These in vitro results suggest that SA-R8-SLN could be proposed as alternative drug delivery system.


Asunto(s)
Antineoplásicos Fitogénicos/farmacocinética , Paclitaxel/farmacocinética , Péptidos/farmacología , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cumarinas/farmacocinética , Diálisis , Relación Dosis-Respuesta a Droga , Humanos , Lípidos/química , Microscopía de Fuerza Atómica , Microscopía Fluorescente , Nanopartículas , Paclitaxel/administración & dosificación , Paclitaxel/química , Tamaño de la Partícula , Péptidos/química
13.
Acta Biomater ; 164: 496-510, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37054962

RESUMEN

Developing a feasible way to feature longitudinal (T1) and transverse (T2) relaxation performance of contrast agents for magnetic resonance imaging (MRI) is important in cancer diagnosis and therapy. Improved accessibility to water molecule is essential for accelerating the relaxation rate of water protons around the contrast agents. Ferrocenyl compounds have reversible redox property for modulating the hydrophobicity/hydrophilicity of assemblies. Thus, they could be the candidates that can change water accessibility to the contrast agent surface. Herein, we incorporated ferrocenylseleno compound (FcSe) with Gd3+-based paramagnetic UCNPs, to obtain FNPs-Gd nanocomposites using T1-T2 MR/UCL trimodal imaging and simultaneous photo-Fenton therapy. When the surface of NaGdF4:Yb,Tm UNCPs was ligated by FcSe, the hydrogen bonding between hydrophilic selenium and surrounding water molecules accelerated their proton exchange to initially endow FNPs-Gd with high r1 relaxivity. Then, hydrogen nuclei from FcSe disrupted the homogeneity of the magnetic field around the water molecules. This facilitated T2 relaxation and resulted in enhanced r2 relaxivity. Notably, upon the near-infrared light-promoted Fenton-like reaction in the tumor microenvironment, hydrophobic ferrocene(II) of FcSe was oxidized into hydrophilic ferrocenium(III), which further increased the relaxation rate of water protons to obtain r1 = 1.90±0.12 mM-1 s-1 and r2 = 12.80±0.60 mM-1 s-1. With an ideal relaxivity ratio (r2/r1) of 6.74, FNPs-Gd exhibited high contrast potential of T1-T2 dual-mode MRI in vitro and in vivo. This work confirms that ferrocene and selenium are effective boosters that enhance the T1-T2 relaxivities of MRI contrast agents, which could provide a new strategy for multimodal imaging-guided photo-Fenton therapy of tumors. STATEMENT OF SIGNIFICANCE: T1-T2 dual-mode MRI nanoplatform with tumor-microenvironment-responsive features has been an attractive prospect. Herein, we designed redox ferrocenylseleno compound (FcSe) modified paramagnetic Gd3+-based UCNPs, to modulate T1-T2 relaxation time for multimodal imaging and H2O2-responsive photo-Fenton therapy. Selenium-hydrogen bond of FcSe with surrounding water molecules facilitated water accessibility for fast T1 relaxation. Hydrogen nucleus in FcSe perturbed the phase coherence of water molecules in an inhomogeneous magnetic field and thus accelerated T2 relaxation. In tumor microenvironment, FcSe was oxidized into hydrophilic ferrocenium via NIR light-promoted Fenton-like reaction which further increased both T1 and T2 relaxation rates; Meanwhile, the released toxic •OH performed on-demand cancer therapy. This work confirms that FcSe is an effective redox mediate for multimodal imaging-guided cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Selenio , Humanos , Medios de Contraste/farmacología , Medios de Contraste/química , Metalocenos/farmacología , Protones , Peróxido de Hidrógeno/farmacología , Gadolinio/química , Nanopartículas/química , Imagen por Resonancia Magnética/métodos , Agua , Imagen Multimodal , Microambiente Tumoral
14.
Yao Xue Xue Bao ; 47(6): 797-802, 2012 Jun.
Artículo en Zh | MEDLINE | ID: mdl-22919730

RESUMEN

A novel chitosan derivant, N-octyl-N-arginine chitosan (OACS) with a mimetic structure of cell-penetrating peptides was synthesized by introducing hydrophilic arginine groups and hydrophobic octyl groups to the amino-group on chitosan's side chain. Structure of the obtained polymer was characterized by FT-IR and 1H NMR. The substitution degree of octyl and arginine groups was calculated through element analysis and spectrophotometric method, separately. The critical micelle concentration of OACS was 0.12 - 0.27 mgmL(-1) tested by fluorescence spectrometry. The solubility test showed OACS could easily dissolve in pH 1 - 12 solutions and self-assemble to form a micelle solution with light blue opalescence. The OACS micelles have a mean size of 158.4 - 224.6 nm, polydisperse index of 0.038 - 0.309 and a zeta potential of +19.16 - +30.80 mV determined by malvern zetasizer. AFM images confirmed free OACS micelle has a regular sphere form with a uniform particle size. MTT test confirmed that OACS was safe in 50 - 1 000 micromol-L(-1). The result of HepG2 cell experiment showed that the cell internalization of OACS micelles enhanced with increased substitution degree of arginine by 40 folds compared to chitosan. Thus, OACS micelles were a promising nano vehicle with permeation enhancement and drug carrier capability.


Asunto(s)
Arginina/análogos & derivados , Péptidos de Penetración Celular/síntesis química , Quitosano/análogos & derivados , Arginina/síntesis química , Arginina/química , Arginina/metabolismo , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Supervivencia Celular , Péptidos de Penetración Celular/química , Quitosano/síntesis química , Quitosano/química , Portadores de Fármacos , Células Hep G2 , Humanos , Espectroscopía de Resonancia Magnética , Micelas , Nanopartículas , Tamaño de la Partícula , Polímeros , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier
15.
Nano Res ; 15(8): 7267-7285, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35692441

RESUMEN

Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.

16.
J Control Release ; 351: 907-922, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36216175

RESUMEN

As microneedle-based vaccines possess advantages of high compliance, moderate invasiveness and convenience that are highly relevant to their unique design, they are becoming an indispensable piece of the puzzle in the field of medical applications. By selecting appropriate materials and methods convenient for precise control over the structure and morphology, MN-based vaccines with strong mechanical properties and variable forms can be fabricated, and specific biomolecules can be used for monitoring or augmenting human immunity. The structural design strategies of MN-based vaccines are highlighted in this review, following a brief discussion of the mechanism of skin immunity and the classification and fabrication approaches of MNs. The biomedical applications of MN-based vaccines, including sampling from interstitial fluid and therapy in infectious diseases and cancers, have also been demonstrated. Finally, the central challenges in this field and opportunities for future developments are also deliberated.


Asunto(s)
Sistemas de Liberación de Medicamentos , Vacunas , Humanos , Administración Cutánea , Agujas , Piel
17.
Acta Biomater ; 151: 88-105, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35970483

RESUMEN

Enzyme-manipulated hydrogelation based on self-assembly of small molecules is an attractive methodology for development of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. Such approach has numerous advantages of region- and enantioselectivity, and mild reaction conditions for encapsulation of biomedications or cells that are fragile to environmental change. In addition to the common applications as drug reservoirs or cell scaffolds, the utilization of endogenous enzymes as stimuli to initiate self-assembly in the living cells and tissue is considered as an intelligent spatiotemporally controllable hydrogelation strategy for biomedical applications. The enzyme-instructed in situ self-assembly and hydrogelation can modulate the cell behavior, and even present therapeutic bioactivities, which provides a new perspective in the field of disease treatment. In this review, we categorize distinct enzymatic stimuli and elaborate substrate design, catalytic characteristics, and mechanisms of self-assembly and hydrogelation. The biomedical applications in drug delivery, tissue engineering, bioimaging, and in situ gelation-produced bioactivity are outlined. Advantages and limitations regarding the state-of-the-art enzyme-driven hydrogelation technologies and future perspectives are also discussed. STATEMENT OF SIGNIFICANCE: Hydrogel is a semi-solid soft material containing a large amount of water. Due to the features of adjustable flexibility, extremely porous architecture, and the high similarity of structure to natural extracellular matrices, the hydrogel has broad application prospects in biomedicine. In recent 20 years, enzyme-manipulated hydrogelation based on self-assembly of small molecules has developed rapidly as an attractive methodology for the construction of functional biomaterials. Upon the catalysis of enzymes, small-molecular precursors are converted into assemblable building blocks, which arrange into high-ordered nanofibers via non-covalent interactions at the molecular level, and further trap water to form hydrogels at the macroscopic level. This review summarized the characteristics of enzymatic hydrogel, as well as the traditional application and emerging prospect of enzyme-instructed self-assembly and hydrogelation.


Asunto(s)
Hidrogeles , Nanofibras , Materiales Biocompatibles/farmacología , Hidrogeles/química , Nanofibras/química , Ingeniería de Tejidos , Agua
18.
Neuroscience ; 490: 182-192, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35306144

RESUMEN

Diabetic neuropathy is one of the most common complications in patients with diabetes and leads to cognitive impairment. It is suggested that protracted hyperglycemia is the main trigger of cognitive deficits in diabetes and causes hippocampal abnormalities. Rapamycin, an inhibitor of mammalian target of rapamycin complex 1 (mTORC1), can significantly ameliorate cognitive deficits in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and Huntington disease. We employed whole-cell patch clamping to examine the effects of rapamycin on neuronal electrophysiological characteristics of the hippocampal dentate gyrus in mice under the condition of high glucose. We recorded the action potentials (APs) and the miniature excitatory postsynaptic currents (mEPSCs) of dentate gyrus neurons. We found that high glucose increased the half-width, the duration and decreased the peak amplitude of Aps as well as the inter-event interval (IEI) of mEPSCs in hippocampal dentate gyrus neurons. However, rapamycin pre-treatment reversed the changes induced by high glucose. Moreover, we demonstrated that rapamycin pre-treatment reversed the down-regulation of postsynaptic density protein 95 (PSD-95) expression caused by high glucose. Therefore, pre-treatment with rapamycin could ameliorate high glucose-induced alteration of synaptic transmission in the hippocampal dentate gyrus.


Asunto(s)
Giro Dentado , Sirolimus , Animales , Glucosa/farmacología , Hipocampo , Humanos , Mamíferos , Ratones , Neuronas/fisiología , Sirolimus/farmacología , Transmisión Sináptica/fisiología
19.
J Agric Food Chem ; 70(31): 9694-9702, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35900332

RESUMEN

Levan-type fructooligosaccharides (FOS) exhibit enhanced health-promoting prebiotic effects on gut microbiota. The wild type (WT) of ß-fructofuranosidase Fru6 could mainly yield 6-ketose. Semirational design and mutagenesis of Fru6 were exploited to promote the transfructosylating capacity for FOS. The promising variants not only improved the formation of 6-kestose but also newly produced tetrasaccharides of 6,6-nystose and 1,6-nystose (a new type of FOS), and combinatorial mutation boosted the production of 6-kestose and tetrasaccharides (39.9 g/L 6,6-nystose and 4.6 g/L 1,6-nystose). Molecular docking and molecular dynamics (MD) simulation confirmed that the mutated positions reshaped the pocket of Fru6 to accommodate bulky 6-kestose in a reactive conformation with better accessibility for tetrasaccharides formation. Using favored conditions, the variant S165A/H357A could yield 6-kestose up to 335 g/L, and tetrasaccharides (6,6-nystose and 1,6-nystose) reached a high level of 121.1 g/L (134.5 times of the mutant S423A). The ß-(2,6)-linked FOS may show the potential application for the prebiotic ingredients.


Asunto(s)
Oligosacáridos , beta-Fructofuranosidasa , Simulación del Acoplamiento Molecular , beta-Fructofuranosidasa/genética
20.
Biomater Sci ; 9(12): 4356-4363, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34127987

RESUMEN

Residual microtumours after surgical resection leading to tumour relapse is one of the major challenges for cancer therapy. Herein, we developed a nano-hybrid oligopeptide hydrogel for topical delivery of a chemotherapeutic drug, docetaxel (DTX), to inhibit the post-surgical tumour recurrence. This nano-hybrid hydrogel (DTX-CTs/Gel) was prepared by encapsulating DTX in cell-penetrating peptide-modified transfersomes followed by embedment in an oligopeptide hydrogel. The obtained DTX-CTs/Gel showed paintable and injectable properties, and could support prolonged retention at the administrated sites after topical administration. DTX-CTs released from the hydrogel presented high skin and tumour penetration capabilities, and increased the accumulation of DTX in the cancer cells leading to enhanced cell death. We showed that the topical delivery of DTX using DTX-CTs/Gel efficiently slowed down the tumour relapse in post-surgical mouse melanoma and breast tumour models.


Asunto(s)
Antineoplásicos , Péptidos de Penetración Celular , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Docetaxel , Sistemas de Liberación de Medicamentos , Humanos , Hidrogeles , Ratones , Recurrencia Local de Neoplasia/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA