Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(50): e2215569119, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36469773

RESUMEN

The flattened leaf form is an important adaptation for efficient photosynthesis, and the developmental process of flattened leaves has been intensively studied. Classic microsurgery studies in potato and tomato suggest that the shoot apical meristem (SAM) communicates with the leaf primordia to promote leaf blade formation. More recently, it was found that polar auxin transport (PAT) could mediate this communication. However, it is unclear how the expression of leaf patterning genes is tailored by PAT routes originating from SAM. By combining experimental observations and computer model simulations, we show that microsurgical incisions and local inhibition of PAT in tomato interfere with auxin transport toward the leaf margins, reducing auxin response levels and altering the leaf blade shape. Importantly, oval auxin responses result in the bipolar expression of SlLAM1 that determines leaf blade formation. Furthermore, wounding caused by incisions promotes degradation of SlREV, a known regulator of leaf polarity. Additionally, computer simulations suggest that local auxin biosynthesis in early leaf primordia could remove necessity for external auxin supply originating from SAM, potentially explaining differences between species. Together, our findings establish how PAT near emerging leaf primordia determines spatial auxin patterning and refines SlLAM1 expression in the leaf margins to guide leaf flattening.


Asunto(s)
Ácidos Indolacéticos , Solanum lycopersicum , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Hojas de la Planta/metabolismo , Transporte Biológico/genética , Organogénesis de las Plantas , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Bioinformatics ; 39(2)2023 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-36744920

RESUMEN

MOTIVATION: The findings from genome-wide association studies (GWASs) have greatly helped us to understand the genetic basis of human complex traits and diseases. Despite the tremendous progress, much effects are still needed to address several major challenges arising in GWAS. First, most GWAS hits are located in the non-coding region of human genome, and thus their biological functions largely remain unknown. Second, due to the polygenicity of human complex traits and diseases, many genetic risk variants with weak or moderate effects have not been identified yet. RESULTS: To address the above challenges, we propose a powerful and adaptive latent model (PALM) to integrate cell-type/tissue-specific functional annotations with GWAS summary statistics. Unlike existing methods, which are mainly based on linear models, PALM leverages a tree ensemble to adaptively characterize non-linear relationship between functional annotations and the association status of genetic variants. To make PALM scalable to millions of variants and hundreds of functional annotations, we develop a functional gradient-based expectation-maximization algorithm, to fit the tree-based non-linear model in a stable manner. Through comprehensive simulation studies, we show that PALM not only controls false discovery rate well, but also improves statistical power of identifying risk variants. We also apply PALM to integrate summary statistics of 30 GWASs with 127 cell type/tissue-specific functional annotations. The results indicate that PALM can identify more risk variants as well as rank the importance of functional annotations, yielding better interpretation of GWAS results. AVAILABILITY AND IMPLEMENTATION: The source code is available at https://github.com/YangLabHKUST/PALM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Estudio de Asociación del Genoma Completo , Programas Informáticos , Humanos , Fenotipo , Estudio de Asociación del Genoma Completo/métodos , Algoritmos , Simulación por Computador , Polimorfismo de Nucleótido Simple
3.
Plant Physiol ; 193(1): 70-82, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37224874

RESUMEN

Distinct from animals, plants maintain organogenesis from specialized tissues termed meristems throughout life. In the shoot apex, the shoot apical meristem (SAM) produces all aerial organs, such as leaves, from its periphery. For this, the SAM needs to precisely balance stem cell renewal and differentiation, which is achieved through dynamic zonation of the SAM, and cell signaling within functional domains is key for SAM functions. The WUSCHEL-CLAVATA feedback loop plays a key role in SAM homeostasis, and recent studies have uncovered new components, expanding our understanding of the spatial expression and signaling mechanism. Advances in polar auxin transport and signaling have contributed to knowledge of the multifaceted roles of auxin in the SAM and organogenesis. Finally, single-cell techniques have expanded our understanding of the cellular functions within the shoot apex at single-cell resolution. In this review, we summarize the most up-to-date understanding of cell signaling in the SAM and focus on the multiple levels of regulation of SAM formation and maintenance.


Asunto(s)
Meristema , Transducción de Señal , Meristema/metabolismo , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Transducción de Señal/fisiología , Ácidos Indolacéticos/metabolismo , Hojas de la Planta/metabolismo , Regulación de la Expresión Génica de las Plantas
4.
Plant Cell ; 33(3): 581-602, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33955485

RESUMEN

Plants possess unique primary cell walls made of complex polysaccharides that play critical roles in determining intrinsic cell and organ size. How genes responsible for synthesizing and modifying the polysaccharides in the cell wall are regulated by microRNAs (miRNAs) to control plant size remains largely unexplored. Here we identified 23 putative cell wall-related miRNAs, termed as CW-miRNAs, in Arabidopsis thaliana and characterized miR775 as an example. We showed that miR775 post-transcriptionally silences GALT9, which encodes an endomembrane-located galactosyltransferase belonging to the glycosyltransferase 31 family. Over-expression of miR775 and deletion of GALT9 led to significantly enlarged leaf-related organs, primarily due to increased cell size. Monosaccharide quantification, confocal Raman imaging, and immunolabeling combined with atomic force microscopy revealed that the MIR775A-GALT9 circuit modulates pectin levels and the elastic modulus of the cell wall. We also showed that MIR775A is directly repressed by the transcription factor ELONGATED HYPOCOTYL5 (HY5). Genetic analysis confirmed that HY5 is a negative regulator of leaf size that acts through the HY5-MIR775A-GALT9 repression cascade to control pectin levels. These findings demonstrate that miR775-regulated cell wall remodeling is an integral determinant of intrinsic leaf size in A. thaliana. Studying other CW-miRNAs would provide more insights into cell wall biology.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Pared Celular/metabolismo , Galactosiltransferasas/metabolismo , Pectinas/metabolismo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Proteínas de Arabidopsis/genética , Galactosiltransferasas/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
5.
Plant J ; 110(6): 1551-1563, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35426954

RESUMEN

Single-cell sequencing approaches reveal the intracellular dynamics of individual cells and answer biological questions with high-dimensional catalogs of millions of cells, including genomics, transcriptomics, chromatin accessibility, epigenomics, and proteomics data across species. These emerging yet thriving technologies have been fully embraced by the field of plant biology, with a constantly expanding portfolio of applications. Here, we introduce the current technical advances used for single-cell omics, especially single-cell genome and transcriptome sequencing. Firstly, we overview methods for protoplast and nucleus isolation and genome and transcriptome amplification. Subsequently, we use well-executed benchmarking studies to highlight advances made through the application of single-cell omics techniques. Looking forward, we offer a glimpse of additional hurdles and future opportunities that will introduce broad adoption of single-cell sequencing with revolutionary perspectives in plant biology.


Asunto(s)
Genómica , Proteómica , Epigenómica/métodos , Genoma , Genómica/métodos , Metabolómica/métodos , Plantas/genética , Proteómica/métodos , Transcriptoma/genética
6.
Plant Cell Physiol ; 64(3): 291-296, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36416577

RESUMEN

During their postembryonic development, plants continuously form branches to conquer more space and adapt to changing environments. In seed plants, this is achieved by lateral branching, in which axillary meristems (AMs) initiate at the leaf axils to form axillary buds. The developmental potential of AMs to form shoot branches is the same as that of embryonic shoot apical meristems (SAMs). Recent studies in Arabidopsis thaliana have revealed the cellular origin of AMs and have identified transcription factors and phytohormones that regulate sequential steps leading to AM initiation. In particular, a group of meristematic cells detached from the SAM are key to AM initiation, which constitutes an excellent system for understanding stem cell fate and de novo meristem formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre/metabolismo , Regulación de la Expresión Génica de las Plantas , Brotes de la Planta/metabolismo
7.
Development ; 147(24)2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33234714

RESUMEN

Plant ovule initiation determines the maximum of ovule number and has a great impact on the seed number per fruit. The detailed processes of ovule initiation have not been accurately described, although two connected processes, gynoecium and ovule development, have been investigated. Here, we report that ovules initiate asynchronously. The first group of ovule primordia grows out, the placenta elongates, the boundaries of existing ovules enlarge and a new group of primordia initiates from the boundaries. The expression pattern of different marker genes during ovule development illustrates that this asynchronicity continues throughout whole ovule development. PIN-FORMED1 polar distribution and auxin response maxima correlate with ovule primordia asynchronous initiation. We have established computational modeling to show how auxin dynamics influence ovule primordia initiation. Brassinosteroid signaling positively regulates ovule number by promoting placentae size and ovule primordia initiation through strengthening auxin response. Transcriptomic analysis demonstrates numerous known regulators of ovule development and hormone signaling, and many new genes are identified that are involved in ovule development. Taken together, our results illustrate that the ovule primordia initiate asynchronously and the hormone signals are involved in the asynchrony.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Transporte de Membrana/genética , Óvulo Vegetal/genética , Desarrollo de la Planta/genética , Transcriptoma/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Óvulo Vegetal/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Transducción de Señal/genética
8.
Development ; 147(10)2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32345745

RESUMEN

Class III homeodomain leucine zipper (HD-ZIPIII) transcription factors play fundamental roles in controlling plant development. The known HD-ZIPIII target genes encode proteins involved in the production and dissipation of the auxin signal, HD-ZIPII transcription factors and components that feedback to regulate HD-ZIPIII expression or protein activity. Here, we have investigated the regulatory hierarchies of the control of MORE AXILLARY BRANCHES2 (MAX2) by the HD-ZIPIII protein REVOLUTA (REV). We found that REV can interact with the promoter of MAX2 In agreement, rev10D gain-of-function mutants had increased levels of MAX2 expression, while rev loss-of-function mutants showed lower levels of MAX2 in some tissues. Like REV, MAX2 plays known roles in the control of plant architecture, photobiology and senescence, which prompted us to initiate a multi-level analysis of growth phenotypes of hd-zipIII, max2 and respective higher order mutants thereof. Our data suggest a complex relationship of synergistic and antagonistic activities between REV and MAX2; these interactions appear to depend on the developmental context and do not all involve the direct regulation of MAX2 by REV.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Proteínas de Homeodominio/metabolismo , Transducción de Señal/genética , Proteínas de Arabidopsis/química , Senescencia Celular/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/química , Leucina Zippers , Mutación con Pérdida de Función , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Fenotipo , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo
9.
Biochem Soc Trans ; 51(2): 513-525, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36876869

RESUMEN

The manner by which plant organs gain their shape is a longstanding question in developmental biology. Leaves, as typical lateral organs, are initiated from the shoot apical meristem that harbors stem cells. Leaf morphogenesis is accompanied by cell proliferation and specification to form the specific 3D shapes, with flattened lamina being the most common. Here, we briefly review the mechanisms controlling leaf initiation and morphogenesis, from periodic initiation in the shoot apex to the formation of conserved thin-blade and divergent leaf shapes. We introduce both regulatory gene patterning and biomechanical regulation involved in leaf morphogenesis. How phenotype is determined by genotype remains largely unanswered. Together, these new insights into leaf morphogenesis resolve molecular chains of events to better aid our understanding.


Asunto(s)
Meristema , Hojas de la Planta , Hojas de la Planta/fisiología , Meristema/genética , Morfogénesis/genética , Regulación de la Expresión Génica de las Plantas
10.
Nucleic Acids Res ; 48(19): e109, 2020 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-32978944

RESUMEN

Transcriptome-wide association studies (TWASs) integrate expression quantitative trait loci (eQTLs) studies with genome-wide association studies (GWASs) to prioritize candidate target genes for complex traits. Several statistical methods have been recently proposed to improve the performance of TWASs in gene prioritization by integrating the expression regulatory information imputed from multiple tissues, and made significant achievements in improving the ability to detect gene-trait associations. Unfortunately, most existing multi-tissue methods focus on prioritization of candidate genes, and cannot directly infer the specific functional effects of candidate genes across different tissues. Here, we propose a tissue-specific collaborative mixed model (TisCoMM) for TWASs, leveraging the co-regulation of genetic variations across different tissues explicitly via a unified probabilistic model. TisCoMM not only performs hypothesis testing to prioritize gene-trait associations, but also detects the tissue-specific role of candidate target genes in complex traits. To make full use of widely available GWASs summary statistics, we extend TisCoMM to use summary-level data, namely, TisCoMM-S2. Using extensive simulation studies, we show that type I error is controlled at the nominal level, the statistical power of identifying associated genes is greatly improved, and the false-positive rate (FPR) for non-causal tissues is well controlled at decent levels. We further illustrate the benefits of our methods in applications to summary-level GWASs data of 33 complex traits. Notably, apart from better identifying potential trait-associated genes, we can elucidate the tissue-specific role of candidate target genes. The follow-up pathway analysis from tissue-specific genes for asthma shows that the immune system plays an essential function for asthma development in both thyroid and lung tissues.


Asunto(s)
Estudio de Asociación del Genoma Completo , Modelos Estadísticos , Sitios de Carácter Cuantitativo , Transcriptoma , Asma/genética , Asma/inmunología , Predisposición Genética a la Enfermedad , Humanos , Pulmón/inmunología , Herencia Multifactorial/genética , Especificidad de Órganos , Glándula Tiroides/inmunología
11.
Plant J ; 104(4): 1073-1087, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32889762

RESUMEN

Compound leaves are composed of multiple separate blade units termed leaflets. In tomato (Solanum lycopersicum) compound leaves, auxin promotes both leaflet initiation and blade expansion. However, it is unclear how these two developmental processes interact. With highly variable complexity, tomato compound leaves provide an ideal system to address this question. In this study, we obtained and analyzed mutants of the WUSCHEL-RELATED HOMEOBOX (WOX) family gene SlLAM1 from tomato, whose orthologs in tobacco (Nicotiana sylvestris) and other species are indispensable for blade expansion. We show that SlLAM1 is expressed in the middle and marginal domains of leaves, and is required for blade expansion in leaflets. We demonstrate that sllam1 mutants cause a delay of leaflet initiation and slightly alter the arrangement of first-order leaflets, whereas the overall leaflet number is comparable to that of wild-type leaves. Analysis of the genetic interactions between SlLAM1 and key auxin signaling components revealed an epistatic effect of SlLAM1 in determining the final leaf form. Finally, we show that SlLAM1 is also required for floral organ growth and affects the fertility of gametophytes. Our data suggest that SlLAM1 promotes blade expansion in multiple leaf types, and leaflet initiation can be largely uncoupled from blade expansion during compound leaf morphogenesis.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal , Solanum lycopersicum/genética , Genes Homeobox , Solanum lycopersicum/crecimiento & desarrollo , Mutación , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Development ; 145(24)2018 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-30446629

RESUMEN

Branching is a common feature of plant development. In seed plants, axillary meristems (AMs) initiate in leaf axils to enable lateral shoot branching. AM initiation requires a high level of expression of the meristem marker SHOOT MERISTEMLESS (STM) in the leaf axil. Here, we show that modules of interacting transcriptional regulators control STM expression and AM initiation. Two redundant AP2-type transcription factors, DORNRÖSCHEN (DRN) and DORNRÖSCHEN-LIKE (DRNL), control AM initiation by regulating STM expression. DRN and DRNL directly upregulate STM expression in leaf axil meristematic cells, as does another transcription factor, REVOLUTA (REV). The activation of STM expression by DRN/DRNL depends on REV, and vice versa. DRN/DRNL and REV have overlapping expression patterns and protein interactions in the leaf axil, which are required for the upregulation of STM expression. Furthermore, LITTLE ZIPPER3, another REV-interacting protein, is expressed in the leaf axil and interferes with the DRN/DRNL-REV interaction to negatively modulate STM expression. Our results support a model in which interacting transcriptional regulators fine-tune the expression of STM to precisely regulate AM initiation. Thus, shoot branching recruits the same conserved protein complexes used in embryogenesis and leaf polarity patterning.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Meristema/ultraestructura , Modelos Biológicos , Mutación/genética , Hojas de la Planta/ultraestructura , Regiones Promotoras Genéticas/genética , Unión Proteica , Factores de Tiempo
13.
Bioinformatics ; 36(7): 2009-2016, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31755899

RESUMEN

MOTIVATION: Although genome-wide association studies (GWAS) have deepened our understanding of the genetic architecture of complex traits, the mechanistic links that underlie how genetic variants cause complex traits remains elusive. To advance our understanding of the underlying mechanistic links, various consortia have collected a vast volume of genomic data that enable us to investigate the role that genetic variants play in gene expression regulation. Recently, a collaborative mixed model (CoMM) was proposed to jointly interrogate genome on complex traits by integrating both the GWAS dataset and the expression quantitative trait loci (eQTL) dataset. Although CoMM is a powerful approach that leverages regulatory information while accounting for the uncertainty in using an eQTL dataset, it requires individual-level GWAS data and cannot fully make use of widely available GWAS summary statistics. Therefore, statistically efficient methods that leverages transcriptome information using only summary statistics information from GWAS data are required. RESULTS: In this study, we propose a novel probabilistic model, CoMM-S2, to examine the mechanistic role that genetic variants play, by using only GWAS summary statistics instead of individual-level GWAS data. Similar to CoMM which uses individual-level GWAS data, CoMM-S2 combines two models: the first model examines the relationship between gene expression and genotype, while the second model examines the relationship between the phenotype and the predicted gene expression from the first model. Distinct from CoMM, CoMM-S2 requires only GWAS summary statistics. Using both simulation studies and real data analysis, we demonstrate that even though CoMM-S2 utilizes GWAS summary statistics, it has comparable performance as CoMM, which uses individual-level GWAS data. AVAILABILITY AND IMPLEMENTATION: The implement of CoMM-S2 is included in the CoMM package that can be downloaded from https://github.com/gordonliu810822/CoMM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Estudio de Asociación del Genoma Completo , Transcriptoma , Genotipo , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
14.
Plant Cell ; 30(2): 324-346, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29371438

RESUMEN

Successful floral meristem (FM) determinacy is critical for subsequent reproductive development and the plant life cycle. Although the phytohormones cytokinin and auxin interact to coregulate many aspects of plant development, whether and how cytokinin and auxin function in FM determinacy remain unclear. Here, we show that in Arabidopsis thaliana, cytokinin homeostasis is critical for FM determinacy. In this developmental context, auxin promotes the expression of AUXIN RESPONSE FACTOR3 (ARF3) to repress cytokinin activity. ARF3 directly represses the expression of ISOPENTENYLTRANSFERASE (IPT) family genes and indirectly represses LONELY GUY (LOG) family genes, both of which encode enzymes required for cytokinin biosynthesis. ARF3 also directly inhibits the expression of ARABIDOPSIS HISTIDINE KINASE4, a cytokinin receptor gene, resulting in reduced cytokinin activity. Consequently, ARF3 controls cell division by regulating cell cycle gene expression through cytokinin. In flowers, we show that AGAMOUS (AG) dynamically regulates the expression of ARF3 and IPTs, resulting in coordinated regulation of FM maintenance and termination through cell division. Moreover, genome-wide transcriptional profiling revealed both repressive and active roles for ARF3 in early flower development. Our findings establish a molecular link between AG and auxin/cytokinin and shed light on the mechanisms of stem cell maintenance and termination in the FM.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Proteínas Nucleares/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , División Celular , Citocininas/metabolismo , Proteínas de Unión al ADN/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Homeostasis , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Proteínas Nucleares/genética
15.
Cell Mol Life Sci ; 77(12): 2343-2354, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31807816

RESUMEN

Axillary meristems (AMs) are located in the leaf axil and can establish new growth axes. Whereas their neighboring cells are differentiated, the undifferentiated cells in the AM endow the AM with the same developmental potential as the shoot apical meristem. The AM is, therefore, an excellent system to study stem cell fate maintenance in plants. In this review, we summarize the current knowledge of AM initiation. Recent findings have shown that AMs derive from a stem cell lineage that is maintained in the leaf axil. This review covers AM progenitor cell fate maintenance, reactivation, and meristem establishment. We also highlight recent work that links transcription factors, phytohormones, and epigenetic regulation to AM initiation.


Asunto(s)
Meristema/fisiología , Proteínas de Arabidopsis/genética , Diferenciación Celular/fisiología , Linaje de la Célula/genética , Linaje de la Célula/fisiología , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/genética , Reguladores del Crecimiento de las Plantas/fisiología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Factores de Transcripción/genética
16.
Bioinformatics ; 35(19): 3693-3700, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30851102

RESUMEN

MOTIVATION: In genome-wide association studies (GWASs) where multiple correlated traits have been measured on participants, a joint analysis strategy, whereby the traits are analyzed jointly, can improve statistical power over a single-trait analysis strategy. There are two questions of interest to be addressed when conducting a joint GWAS analysis with multiple traits. The first question examines whether a genetic loci is significantly associated with any of the traits being tested. The second question focuses on identifying the specific trait(s) that is associated with the genetic loci. Since existing methods primarily focus on the first question, this article seeks to provide a complementary method that addresses the second question. RESULTS: We propose a novel method, Variational Inference for Multiple Correlated Outcomes (VIMCO) that focuses on identifying the specific trait that is associated with the genetic loci, when performing a joint GWAS analysis of multiple traits, while accounting for correlation among the multiple traits. We performed extensive numerical studies and also applied VIMCO to analyze two datasets. The numerical studies and real data analysis demonstrate that VIMCO improves statistical power over single-trait analysis strategies when the multiple traits are correlated and has comparable performance when the traits are not correlated. AVAILABILITY AND IMPLEMENTATION: The VIMCO software can be downloaded from: https://github.com/XingjieShi/VIMCO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Estudio de Asociación del Genoma Completo , Programas Informáticos , Sitios Genéticos , Fenotipo , Polimorfismo de Nucleótido Simple , Proyectos de Investigación
17.
Plant Cell ; 29(5): 1073-1087, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28389585

RESUMEN

Plant cells are totipotent and competent to regenerate from differentiated organs. It has been known for six decades that cytokinin-rich medium induces shoot regeneration from callus cells. However, the underlying molecular mechanism remains elusive. The homeodomain transcription factor WUSCHEL (WUS) is essential for de novo establishment of the shoot stem cell niche in Arabidopsis thaliana We found that WUS-positive (WUS+) cells mark the shoot progenitor region during regeneration. A cytokinin-rich environment initially promotes the removal of the repressive histone mark H3K27me3 at the WUS locus in a cell cycle-dependent manner. Subsequently, the B-type ARABIDOPSIS RESPONSE REGULATORs (ARRs) ARR1, ARR2, ARR10, and ARR12, which function as transcriptional activators in the cytokinin signaling pathway, spatially activate WUS expression through binding with microRNA165/6-targeted HD-ZIP III transcription factors. Thus, our results provide important insights into the molecular framework for cytokinin-directed shoot regeneration and reveal a two-step mechanism for de novo activation of WUS.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Homeodominio/metabolismo , Brotes de la Planta/metabolismo , Brotes de la Planta/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Homeodominio/genética , Brotes de la Planta/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
18.
Plant Cell ; 29(6): 1373-1387, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28576845

RESUMEN

The homeodomain transcription factor WUSCHEL (WUS) defines the shoot stem cell niche, but the mechanisms underlying the establishment of WUS expression remain unclear. Here, we show that cytokinin signaling precedes WUS expression in leaf axils and activates WUS expression de novo in the leaf axil to promote axillary meristem initiation. Furthermore, type-B Arabidopsis response regulator proteins, which are transcriptional activators in the cytokinin signaling pathway, directly bind to the WUS promoter and activate its expression. Finally, we show that cytokinin activation of WUS in the leaf axil correlates with increased histone acetylation and methylation markers associated with transcriptional activation, supporting the fact that WUS expression requires a permissive epigenetic environment to restrict it to highly defined meristematic tissues. Taken together, these findings explain how cytokinin regulates axillary meristem initiation and establish a mechanistic framework for the postembryonic establishment of the shoot stem cell niche.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Meristema/metabolismo , Acetilación , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citocininas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/citología , Meristema/genética , Transducción de Señal
19.
J Integr Plant Biol ; 62(12): 1853-1867, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32725947

RESUMEN

The shape of comparable tissues and organs is consistent among individuals of a given species, but how this consistency or robustness is achieved remains an open question. The interaction between morphogenetic factors determines organ formation and subsequent shaping, which is ultimately a mechanical process. Using a computational approach, we show that the epidermal layer is essential for the robustness of organ geometry control. Specifically, proper epidermal restriction allows organ asymmetry maintenance, and the tensile epidermal layer is sufficient to suppress local variability in growth, leading to shape robustness. The model explains the enhanced organ shape variations in epidermal mutant plants. In addition, differences in the patterns of epidermal restriction may underlie the initial establishment of organ asymmetry. Our results show that epidermal restriction can answer the longstanding question of how cellular growth noise is averaged to produce precise organ shapes, and the findings also shed light on organ asymmetry establishment.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
20.
PLoS Genet ; 12(7): e1006194, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27427911

RESUMEN

Enhanced root hair production, which increases the root surface area for nutrient uptake, is a typical adaptive response of plants to phosphate (Pi) starvation. Although previous studies have shown that ethylene plays an important role in root hair development induced by Pi starvation, the underlying molecular mechanism is not understood. In this work, we characterized an Arabidopsis mutant, hps5, that displays constitutive ethylene responses and increased sensitivity to Pi starvation due to a mutation in the ethylene receptor ERS1. hps5 accumulates high levels of EIN3 protein, a key transcription factor involved in the ethylene signaling pathway, under both Pi sufficiency and deficiency. Pi starvation also increases the accumulation of EIN3 protein. Combined molecular, genetic, and genomic analyses identified a group of genes that affect root hair development by regulating cell wall modifications. The expression of these genes is induced by Pi starvation and is enhanced in the EIN3-overexpressing line. In contrast, the induction of these genes by Pi starvation is suppressed in ein3 and ein3eil1 mutants. EIN3 protein can directly bind to the promoter of these genes, some of which are also the immediate targets of RSL4, a key transcription factor that regulates root hair development. Based on these results, we propose that under normal growth conditions, the level of ethylene is low in root cells; a group of key transcription factors, including RSL4 and its homologs, trigger the transcription of their target genes to promote root hair development; Pi starvation increases the levels of the protein EIN3, which directly binds to the promoters of the genes targeted by RSL4 and its homologs and further increase their transcription, resulting in the enhanced production of root hairs. This model not only explains how ethylene mediates root hair responses to Pi starvation, but may provide a general mechanism for how ethylene regulates root hair development under both stress and non-stress conditions.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Etilenos/química , Fosfatos/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Antocianinas/química , Proteínas de Arabidopsis/genética , Mapeo Cromosómico , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Proteínas de Choque Térmico/genética , Mutación , Proteínas Nucleares/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Regiones Promotoras Genéticas , Transducción de Señal/genética , Factores de Transcripción/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA