Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
PLoS Comput Biol ; 18(3): e1009963, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35344536

RESUMEN

Tessellations emerge in many natural systems, and the constituent domains often contain regular patterns, raising the intriguing possibility that pattern formation within adjacent domains might be correlated by the geometry, without the direct exchange of information between parts comprising either domain. We confirm this paradoxical effect, by simulating pattern formation via reaction-diffusion in domains whose boundary shapes tessellate, and showing that correlations between adjacent patterns are strong compared to controls that self-organize in domains with equivalent sizes but unrelated shapes. The effect holds in systems with linear and non-linear diffusive terms, and for boundary shapes derived from regular and irregular tessellations. Based on the prediction that correlations between adjacent patterns should be bimodally distributed, we develop methods for testing whether a given set of domain boundaries constrained pattern formation within those domains. We then confirm such a prediction by analysing the development of 'subbarrel' patterns, which are thought to emerge via reaction-diffusion, and whose enclosing borders form a Voronoi tessellation on the surface of the rodent somatosensory cortex. In more general terms, this result demonstrates how causal links can be established between the dynamical processes through which biological patterns emerge and the constraints that shape them.


Asunto(s)
Comunicación , Corteza Somatosensorial , Difusión
2.
Bioinspir Biomim ; 18(1)2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36327454

RESUMEN

Hippocampal reverse replay, a phenomenon in which recently active hippocampal cells reactivate in the reverse order, is thought to contribute to learning, particularly reinforcement learning (RL), in animals. Here, we present a novel computational model which exploits reverse replay to improve stability and performance on a homing task. The model takes inspiration from the hippocampal-striatal network, and learning occurs via a three-factor RL rule. To augment this model with hippocampal reverse replay, we derived a policy gradient learning rule that associates place-cell activity with responses in cells representing actions and a supervised learning rule of the same form, interpreting the replay activity as a 'target' frequency. We evaluated the model using a simulated robot spatial navigation task inspired by the Morris water maze. Results suggest that reverse replay can improve performance stability over multiple trials. Our model exploits reverse reply as an additional source for propagating information about desirable synaptic changes, reducing the requirements for long-time scales in eligibility traces combined with low learning rates. We conclude that reverse replay can positively contribute to RL, although less stable learning is possible in its absence. Analogously, we postulate that reverse replay may enhance RL in the mammalian hippocampal-striatal system rather than provide its core mechanism.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Navegación Espacial , Animales , Hipocampo/fisiología , Refuerzo en Psicología , Navegación Espacial/fisiología , Mamíferos
3.
Elife ; 112022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35924884

RESUMEN

Topographic sensory representations often do not scale proportionally to the size of their input regions, with some expanded and others contracted. In vision, the foveal representation is magnified cortically, as are the fingertips in touch. What principles drive this allocation, and how should receptor density, for example, the high innervation of the fovea or the fingertips, and stimulus statistics, for example, the higher contact frequencies on the fingertips, contribute? Building on work in efficient coding, we address this problem using linear models that optimally decorrelate the sensory signals. We introduce a sensory bottleneck to impose constraints on resource allocation and derive the optimal neural allocation. We find that bottleneck width is a crucial factor in resource allocation, inducing either expansion or contraction. Both receptor density and stimulus statistics affect allocation and jointly determine convergence for wider bottlenecks. Furthermore, we show a close match between the predicted and empirical cortical allocations in a well-studied model system, the star-nosed mole. Overall, our results suggest that the strength of cortical magnification depends on resource limits.


Asunto(s)
Topos , Percepción del Tacto , Animales , Dedos , Asignación de Recursos , Tacto
4.
Biosalud ; 15(2): 20-27, jul.-dic. 2016. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-950976

RESUMEN

Caffeine is a highly consumed stimulant of the nervous system. Although caffeine has diverse effects on different brain functions, little is known about the specific pharmacokinetics of this substance in the brain. For instance, most studies that assessed caffeine distribution in the rat brain have only measured caffeine levels in the cortex and striatum but not in more specific brain areas. Aims: The purpose of this work was to measure the caffeine concentration in blood and different brain regions (i.e. cortex, striatum, hippocampus, cerebellum and brainstem) at different times after the administration of a single intraperitoneal dose of caffeine. Methods: Adult Wistar rats (250 to 300 gr) were injected with a single intraperitoneal dose of 30 mg/Kg of caffeine. 20, 40, 60 and 80 minutes after administration, subjects were sacrificed by decapitation and samples of plasma, cerebral cortex, striatum, hippocampus, cerebellum and brainstem were obtained. Caffeine levels in the blood and each brain structure were measured by RP-HPLC and statistical analysis was performed. Results: Caffeine levels were higher in the plasma compared to all the brain structures studied. Different brain regions displayed similar caffeine concentrations. For all brain regions, the maximal concentration levels of caffeine were reached in the first 40 minutes after caffeine administration. Conclusions: The results support previous studies that show similar caffeine concentration between cortex and striatum, but also extend the results to other brain structures. Furthermore, caffeine concentration increases similarly in the plasma and brain structures. 40, 60 and 80 minutes after administration, caffeine concentration in the blood is almost two times higher than in the brain. This suggests that the effects of caffeine on different brain functions do not depend on pharmacokinetic differences between brain areas and are rather explained by pharmacodynamics.


Antecedentes: La cafeína es el estimulante del sistema nervioso más consumido a nivel mundial. Aunque, la cafeína tiene diferentes efectos sobre las funciones cerebrales, poco se sabe acerca de su farmacocinética en el cerebro. Por ejemplo, la mayoría de estudios que evaluaron la distribución de cafeína en el cerebro de rata han medido niveles de cafeína en corteza y estriado, pero no en áreas cerebrales más específicas. Objetivo: El propósito del trabajo fue medir la concentración de cafeína en sangre y diferentes regiones encefálicas (corteza, estriado, hipocampo, cerebelo, tallo cerebral), a diferentes tiempos, después de administrar una única dosis de cafeína. Método: Ratas Wistar adultas (250-300 gr) recibieron una dosis intraperitoneal de cafeína de 30mg/Kg de peso. 20, 40 60 y 80 minutos después de la administración, los sujetos se sacrificaron por decapitación y se obtuvieron muestras de plasma, corteza cerebral, estriado, hipocampo, cerebelo y tallo cerebral. Los niveles de cafeína en plasma y estructuras encefálicas se determinaron por RP-HPLC y se realizó análisis estadístico. Resultados: Los niveles de cafeína fueron mayores en plasma que en las regiones encefálicas estudiadas. Las distintas regiones encefálicas presentaron concentraciones similares de cafeína. En todas las regiones, la mayor concentración de cafeína se obtuvo 40 minutos después de la administración de cafeína. Conclusiones: Este estudio soporta resultados previos que muestran concentraciones similares de cafeína entre la corteza y el estriado, además los extiende a otras regiones encefálicas. La concentración de cafeína aumenta similarmente en plasma y estructuras encefálicas. 40, 60 y 80 minutos después de la administración, la concentración de cafeína en plasma es casi el doble de la encontrada en el cerebro. Lo anterior sugiere que los efectos de la cafeína en distintas funciones cerebrales no dependen de diferencias farmacocinéticas entre regiones encefálicas sino que son más bien explicadas por factores farmacodinámicos.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA