Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.630
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(21): 4528-4545.e18, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37788669

RESUMEN

MLL/KMT2A amplifications and translocations are prevalent in infant, adult, and therapy-induced leukemia. However, the molecular contributor(s) to these alterations are unclear. Here, we demonstrate that histone H3 lysine 9 mono- and di-methylation (H3K9me1/2) balance at the MLL/KMT2A locus regulates these amplifications and rearrangements. This balance is controlled by the crosstalk between lysine demethylase KDM3B and methyltransferase G9a/EHMT2. KDM3B depletion increases H3K9me1/2 levels and reduces CTCF occupancy at the MLL/KMT2A locus, in turn promoting amplification and rearrangements. Depleting CTCF is also sufficient to generate these focal alterations. Furthermore, the chemotherapy doxorubicin (Dox), which associates with therapy-induced leukemia and promotes MLL/KMT2A amplifications and rearrangements, suppresses KDM3B and CTCF protein levels. KDM3B and CTCF overexpression rescues Dox-induced MLL/KMT2A alterations. G9a inhibition in human cells or mice also suppresses MLL/KMT2A events accompanying Dox treatment. Therefore, MLL/KMT2A amplifications and rearrangements are controlled by epigenetic regulators that are tractable drug targets, which has clinical implications.


Asunto(s)
Epigénesis Genética , Proteína de la Leucemia Mieloide-Linfoide , Adulto , Animales , Humanos , Lactante , Ratones , Doxorrubicina/farmacología , Reordenamiento Génico , Antígenos de Histocompatibilidad , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia/metabolismo , Lisina/metabolismo , Proteína de la Leucemia Mieloide-Linfoide/genética , Translocación Genética
2.
Cell ; 184(15): 4032-4047.e31, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34171309

RESUMEN

Although mutations in DNA are the best-studied source of neoantigens that determine response to immune checkpoint blockade, alterations in RNA splicing within cancer cells could similarly result in neoepitope production. However, the endogenous antigenicity and clinical potential of such splicing-derived epitopes have not been tested. Here, we demonstrate that pharmacologic modulation of splicing via specific drug classes generates bona fide neoantigens and elicits anti-tumor immunity, augmenting checkpoint immunotherapy. Splicing modulation inhibited tumor growth and enhanced checkpoint blockade in a manner dependent on host T cells and peptides presented on tumor MHC class I. Splicing modulation induced stereotyped splicing changes across tumor types, altering the MHC I-bound immunopeptidome to yield splicing-derived neoepitopes that trigger an anti-tumor T cell response in vivo. These data definitively identify splicing modulation as an untapped source of immunogenic peptides and provide a means to enhance response to checkpoint blockade that is readily translatable to the clinic.


Asunto(s)
Neoplasias/genética , Neoplasias/inmunología , Empalme del ARN/genética , Animales , Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/inmunología , Antígenos de Neoplasias/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Epítopos/inmunología , Etilenodiaminas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Antígenos de Histocompatibilidad Clase I/metabolismo , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia , Inflamación/patología , Ratones Endogámicos C57BL , Péptidos/metabolismo , Isoformas de Proteínas/metabolismo , Pirroles/farmacología , Empalme del ARN/efectos de los fármacos , Sulfonamidas/farmacología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
3.
Nature ; 628(8008): 664-671, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600377

RESUMEN

Bitter taste sensing is mediated by type 2 taste receptors (TAS2Rs (also known as T2Rs)), which represent a distinct class of G-protein-coupled receptors1. Among the 26 members of the TAS2Rs, TAS2R14 is highly expressed in extraoral tissues and mediates the responses to more than 100 structurally diverse tastants2-6, although the molecular mechanisms for recognizing diverse chemicals and initiating cellular signalling are still poorly understood. Here we report two cryo-electron microscopy structures for TAS2R14 complexed with Ggust (also known as gustducin) and Gi1. Both structures have an orthosteric binding pocket occupied by endogenous cholesterol as well as an intracellular allosteric site bound by the bitter tastant cmpd28.1, including a direct interaction with the α5 helix of Ggust and Gi1. Computational and biochemical studies validate both ligand interactions. Our functional analysis identified cholesterol as an orthosteric agonist and the bitter tastant cmpd28.1 as a positive allosteric modulator with direct agonist activity at TAS2R14. Moreover, the orthosteric pocket is connected to the allosteric site via an elongated cavity, which has a hydrophobic core rich in aromatic residues. Our findings provide insights into the ligand recognition of bitter taste receptors and suggest activities of TAS2R14 beyond bitter taste perception via intracellular allosteric tastants.


Asunto(s)
Colesterol , Espacio Intracelular , Receptores Acoplados a Proteínas G , Gusto , Humanos , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacología , Microscopía por Crioelectrón , Interacciones Hidrofóbicas e Hidrofílicas , Espacio Intracelular/química , Espacio Intracelular/metabolismo , Ligandos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Reproducibilidad de los Resultados , Gusto/efectos de los fármacos , Gusto/fisiología , Transducina/química , Transducina/metabolismo , Transducina/ultraestructura
4.
Nature ; 617(7962): 724-729, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138081

RESUMEN

The carbon dioxide and carbon monoxide electroreduction reactions, when powered using low-carbon electricity, offer pathways to the decarbonization of chemical manufacture1,2. Copper (Cu) is relied on today for carbon-carbon coupling, in which it produces mixtures of more than ten C2+ chemicals3-6: a long-standing challenge lies in achieving selectivity to a single principal C2+ product7-9. Acetate is one such C2 compound on the path to the large but fossil-derived acetic acid market. Here we pursued dispersing a low concentration of Cu atoms in a host metal to favour the stabilization of ketenes10-chemical intermediates that are bound in monodentate fashion to the electrocatalyst. We synthesize Cu-in-Ag dilute (about 1 atomic per cent of Cu) alloy materials that we find to be highly selective for acetate electrosynthesis from CO at high *CO coverage, implemented at 10 atm pressure. Operando X-ray absorption spectroscopy indicates in situ-generated Cu clusters consisting of <4 atoms as active sites. We report a 12:1 ratio, an order of magnitude increase compared to the best previous reports, in the selectivity for acetate relative to all other products observed from the carbon monoxide electroreduction reaction. Combining catalyst design and reactor engineering, we achieve a CO-to-acetate Faradaic efficiency of 91% and report a Faradaic efficiency of 85% with an 820-h operating time. High selectivity benefits energy efficiency and downstream separation across all carbon-based electrochemical transformations, highlighting the importance of maximizing the Faradaic efficiency towards a single C2+ product11.

5.
Nature ; 610(7933): 661-666, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36198794

RESUMEN

Networks of optical clocks find applications in precise navigation1,2, in efforts to redefine the fundamental unit of the 'second'3-6 and in gravitational tests7. As the frequency instability for state-of-the-art optical clocks has reached the 10-19 level8,9, the vision of a global-scale optical network that achieves comparable performances requires the dissemination of time and frequency over a long-distance free-space link with a similar instability of 10-19. However, previous attempts at free-space dissemination of time and frequency at high precision did not extend beyond dozens of kilometres10,11. Here we report time-frequency dissemination with an offset of 6.3 × 10-20 ± 3.4 × 10-19 and an instability of less than 4 × 10-19 at 10,000 s through a free-space link of 113 km. Key technologies essential to this achievement include the deployment of high-power frequency combs, high-stability and high-efficiency optical transceiver systems and efficient linear optical sampling. We observe that the stability we have reached is retained for channel losses up to 89 dB. The technique we report can not only be directly used in ground-based applications, but could also lay the groundwork for future satellite time-frequency dissemination.

6.
Cell ; 149(2): 307-21, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500798

RESUMEN

Kinase inhibitors have limited success in cancer treatment because tumors circumvent their action. Using a quantitative proteomics approach, we assessed kinome activity in response to MEK inhibition in triple-negative breast cancer (TNBC) cells and genetically engineered mice (GEMMs). MEK inhibition caused acute ERK activity loss, resulting in rapid c-Myc degradation that induced expression and activation of several receptor tyrosine kinases (RTKs). RNAi knockdown of ERK or c-Myc mimicked RTK induction by MEK inhibitors, and prevention of proteasomal c-Myc degradation blocked kinome reprogramming. MEK inhibitor-induced RTK stimulation overcame MEK2 inhibition, but not MEK1 inhibition, reactivating ERK and producing drug resistance. The C3Tag GEMM for TNBC similarly induced RTKs in response to MEK inhibition. The inhibitor-induced RTK profile suggested a kinase inhibitor combination therapy that produced GEMM tumor apoptosis and regression where single agents were ineffective. This approach defines mechanisms of drug resistance, allowing rational design of combination therapies for cancer.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Resistencia a Antineoplásicos , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Proteínas Quinasas/genética , Proteoma/análisis , Animales , Antineoplásicos/uso terapéutico , Bencenosulfonatos/uso terapéutico , Bencimidazoles/uso terapéutico , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Niacinamida/análogos & derivados , Compuestos de Fenilurea , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Piridinas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/genética , Sorafenib
7.
Nature ; 600(7887): 170-175, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34789874

RESUMEN

The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.


Asunto(s)
Microscopía por Crioelectrón , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Prurito/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Receptores de Neuropéptido/antagonistas & inhibidores , Receptores de Neuropéptido/química , Agonismo Inverso de Drogas , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/ultraestructura , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/ultraestructura , Humanos , Modelos Moleculares , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/ultraestructura , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestructura , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/ultraestructura
8.
Genome Res ; 33(2): 197-207, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36806146

RESUMEN

The placenta is an organ with extraordinary phenotypic diversity in eutherian mammals. Recent evidence suggests that numerous human placental enhancers are evolved from lineage-specific insertions of endogenous retroviruses (ERVs), yet the transcription factors (TFs) underlying their regulation remain largely elusive. Here, by first focusing on MER41, a primate-specific ERV family previously linked to placenta and innate immunity, we uncover the binding motifs of multiple crucial trophoblast TFs (GATA2/3, MSX2, GRHL2) in addition to innate immunity TFs STAT1 and IRF1. Integration of ChIP-seq data confirms the binding of GATA2/3, MSX2, and their related factors on the majority of MER41-derived enhancers in human trophoblast stem cells (TSCs). MER41-derived enhancers that are constitutively active in human TSCs are distinct from those activated upon interferon stimulation, which is determined by the binding of relevant TFs and their subfamily compositions. We further demonstrate that GATA2/3 and MSX2 have prevalent binding to numerous other ERV families - indicating their broad impact on ERV-derived enhancers. Functionally, the derepression of many syncytiotrophoblast genes after MSX2 knockdown is likely to be mediated by regulatory elements derived from ERVs - suggesting ERVs are also important for mediating transcriptional repression. Overall, this study characterizes the regulation of ERV-derived regulatory elements by GATA2/3, MSX2, and their cofactors in human TSCs, and provides mechanistic insights into the importance of ERVs in human trophoblast regulatory network.


Asunto(s)
Retrovirus Endógenos , Animales , Femenino , Humanos , Embarazo , Factor de Transcripción GATA2/genética , Mamíferos/genética , Placenta/fisiología , Primates/genética , Secuencias Reguladoras de Ácidos Nucleicos , Células Madre , Trofoblastos
9.
J Biol Chem ; 300(3): 105667, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272228

RESUMEN

The aggregation of α-Synuclein (α-Syn) into amyloid fibrils is the hallmark of Parkinson's disease. Under stress or other pathological conditions, the accumulation of α-Syn oligomers is the main contributor to the cytotoxicity. A potential approach for treating Parkinson's disease involves preventing the accumulation of these α-Syn oligomers. In this study, we present a novel mechanism involving a conserved group of disorderly proteins known as small EDRK-rich factor (SERF), which promotes the aggregation of α-Syn through a cophase separation process. Using diverse methods like confocal microscopy, fluorescence recovery after photobleaching assays, solution-state NMR spectroscopy, and Western blot, we determined that the N-terminal domain of SERF1a plays a role in the interactions that occur during cophase separation. Within these droplets, α-Syn undergoes a gradual transformation from solid condensates to amyloid fibrils, while SERF1a is excluded from the condensates and dissolves into the solution. Notably, in vivo experiments show that SERF1a cophase separation with α-Syn significantly reduces the deposition of α-Syn oligomers and decreases its cellular toxicity under stress. These findings suggest that SERF1a accelerates the conversion of α-Syn from highly toxic oligomers to less toxic fibrils through cophase separation, thereby mitigating the biological damage of α-Syn aggregation.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Amiloide/química , Enfermedad de Parkinson/metabolismo , Separación de Fases , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Factores de Transcripción , Antígenos de Grupos Sanguíneos/química , Antígenos de Grupos Sanguíneos/metabolismo , Células HeLa , Electricidad Estática
11.
Mol Ther ; 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38796700

RESUMEN

Prader-Willi syndrome (PWS) is the prototypic genomic disorder resulting from deficiency of paternally expressed genes in the human chromosome 15q11-q13 region. The unique molecular mechanism involving epigenetic modifications renders PWS as the most attractive candidate to explore a proof-of-concept of epigenetic therapy in humans. The premise is that epigenetic modulations could reactivate the repressed PWS candidate genes from the maternal chromosome and offer therapeutic benefit. Our prior study identifies an EHMT2/G9a inhibitor, UNC0642, that reactivates the expression of PWS genes via reduction of H3K9me2. However, low brain permeability and poor oral bioavailability of UNC0642 preclude its advancement into translational studies in humans. In this study, a newly developed inhibitor, MS152, modified from the structure of UNC0642, has better brain penetration and greater potency and selectivity against EHMT2/G9a. MS152 reactivated maternally silenced PWS genes in PWS patient fibroblasts and in brain and liver tissues of PWS mouse models. Importantly, the molecular efficacy of oral administration is comparable with the intraperitoneal route. MS152 treatment in newborns ameliorates the perinatal lethality and poor growth, maintaining reactivation in a PWS mouse model at postnatal 90 days. Our findings provide strong support for MS152 as a first-in-class inhibitor to advance the epigenetic therapy of PWS in humans.

12.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217626

RESUMEN

Acute myeloid leukemias (AMLs) with the NUP98-NSD1 or mixed lineage leukemia (MLL) rearrangement (MLL-r) share transcriptomic profiles associated with stemness-related gene signatures and display poor prognosis. The molecular underpinnings of AML aggressiveness and stemness remain far from clear. Studies with EZH2 enzymatic inhibitors show that polycomb repressive complex 2 (PRC2) is crucial for tumorigenicity in NUP98-NSD1+ AML, whereas transcriptomic analysis reveal that Kdm5b, a lysine demethylase gene carrying "bivalent" chromatin domains, is directly repressed by PRC2. While ectopic expression of Kdm5b suppressed AML growth, its depletion not only promoted tumorigenicity but also attenuated anti-AML effects of PRC2 inhibitors, demonstrating a PRC2-|Kdm5b axis for AML oncogenesis. Integrated RNA sequencing (RNA-seq), chromatin immunoprecipitation followed by sequencing (ChIP-seq), and Cleavage Under Targets & Release Using Nuclease (CUT&RUN) profiling also showed that Kdm5b directly binds and represses AML stemness genes. The anti-AML effect of Kdm5b relies on its chromatin association and/or scaffold functions rather than its demethylase activity. Collectively, this study describes a molecular axis that involves histone modifiers (PRC2-|Kdm5b) for sustaining AML oncogenesis.


Asunto(s)
Histona Demetilasas con Dominio de Jumonji/metabolismo , Leucemia Mieloide Aguda/patología , Proteínas Nucleares/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Proteínas Represoras/metabolismo , Animales , Carcinogénesis , Perfilación de la Expresión Génica , Histona Demetilasas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Ratones , Proteínas Oncogénicas/metabolismo , Complejo Represivo Polycomb 2/antagonistas & inhibidores , Unión Proteica , Análisis de Secuencia de ARN/métodos
13.
J Am Chem Soc ; 146(11): 7584-7593, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38469801

RESUMEN

Given the prevalent advancements in DNA- and RNA-based PROTACs, there remains a significant need for the exploration and expansion of more specific DNA-based tools, thus broadening the scope and repertoire of DNA-based PROTACs. Unlike conventional A- or B-form DNA, Z-form DNA is a configuration that exclusively manifests itself under specific stress conditions and with specific target sequences, which can be recognized by specific reader proteins, such as ADAR1 or ZBP1, to exert downstream biological functions. The core of our innovation lies in the strategic engagement of Z-form DNA with ADAR1 and its degradation is achieved by leveraging a VHL ligand conjugated to Z-form DNA to recruit the E3 ligase. This ingenious construct engendered a series of Z-PROTACs, which we utilized to selectively degrade the Z-DNA-binding protein ADAR1, a molecule that is frequently overexpressed in cancer cells. This meticulously orchestrated approach triggers a cascade of PANoptotic events, notably encompassing apoptosis and necroptosis, by mitigating the blocking effect of ADAR1 on ZBP1, particularly in cancer cells compared with normal cells. Moreover, the Z-PROTAC design exhibits a pronounced predilection for ADAR1, as opposed to other Z-DNA readers, such as ZBP1. As such, Z-PROTAC likely elicits a positive immunological response, subsequently leading to a synergistic augmentation of cancer cell death. In summary, the Z-DNA-based PROTAC (Z-PROTAC) approach introduces a modality generated by the conformational change from B- to Z-form DNA, which harnesses the structural specificity intrinsic to potentiate a selective degradation strategy. This methodology is an inspiring conduit for the advancement of PROTAC-based therapeutic modalities, underscoring its potential for selectivity within the therapeutic landscape of PROTACs to target undruggable proteins.


Asunto(s)
ADN de Forma Z , Quimera Dirigida a la Proteólisis , Proteolisis , Adenosina Desaminasa/metabolismo , ARN/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Unión al ADN/metabolismo
14.
J Am Chem Soc ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38597345

RESUMEN

Deubiquitinase-targeting chimeras (DUBTACs) have been recently developed to stabilize proteins of interest, which is in contrast to targeted protein degradation (TPD) approaches that degrade disease-causing proteins. However, to date, only the OTUB1 deubiquitinase has been utilized to develop DUBTACs via an OTUB1 covalent ligand, which could unexpectedly compromise the endogenous function of OTUB1 owing to its covalent nature. Here, we show for the first time that deubiquitinase USP7 can be harnessed for DUBTAC development. Based on a noncovalent ligand of USP7, we developed USP7-based DUBTACs that stabilized the ΔF508-CFTR mutant protein as effectively as the previously reported OTUB1-based DUBTAC. Importantly, using two different noncovalent ligands of USP7, we developed the first AMPK DUBTACs that appear to selectively stabilize different isoforms of AMPKß, leading to elevated AMPK signaling. Overall, these results highlight that, in addition to OTUB1, USP7 can be leveraged to develop DUBTACs, thus significantly expanding the limited toolbox for targeted protein stabilization and the development of novel AMPK DUBTACs as potential therapeutics.

15.
PLoS Pathog ; 18(6): e1010584, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35696408

RESUMEN

Escherichia coli F18 is a common conditional pathogen that is associated with a variety of infections in humans and animals. LncRNAs have emerged as critical players in pathogen infection, but their role in the resistance of the host to bacterial diarrhea remains unknown. Here, we used piglets as animal model and identified an antisense lncRNA termed FUT3-AS1 as a host regulator related to E. coli F18 infection by RNA sequencing. Downregulation of FUT3-AS1 expression contributed to the enhancement of E. coli F18 resistance in IPEC-J2 cells. FUT3-AS1 knockdown reduced FUT3 expression via decreasing the H4K16ac level of FUT3 promoter. Besides, the FUT3-AS1/miR-212 axis could act as a competing endogenous RNA to regulate FUT3 expression. Functional analysis demonstrated that target FUT3 plays a vital role in the resistance of IPEC-J2 cells to E. coli F18 invasion. A Fut3-knockout mice model was established and Fut3-knockout mice obviously improved the ability of resistance to bacterial diarrhea. Interestingly, FUT3 could enhance E. coli F18 susceptibility by activating glycosphingolipid biosynthesis and toll-like receptor signaling which are related to receptor formation and immune response, respectively. In summary, we have identified a novel biomarker FUT3-AS1 that modulates E. coli F18 susceptibility via histone H4 modifications or miR-212/FUT3 axis, which will provide theoretical guidance to develop novel strategies for combating bacterial diarrhea in piglets.


Asunto(s)
Infecciones por Escherichia coli , MicroARNs , ARN Largo no Codificante , Enfermedades de los Porcinos , Animales , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Diarrea/genética , Escherichia coli/metabolismo , Infecciones por Escherichia coli/microbiología , Regulación Neoplásica de la Expresión Génica , Ratones , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Porcinos , Enfermedades de los Porcinos/genética
16.
Haematologica ; 109(2): 567-577, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-37496441

RESUMEN

Multiple myeloma is a heterogeneous hematological disease that originates from the bone marrow and is characterized by the monoclonal expansion of malignant plasma cells. Despite novel therapies, multiple myeloma remains clinically challenging. A common feature among patients with poor prognosis is the increased activity of the epigenetic silencer EZH2, which is the catalytic subunit of the PRC2. Interestingly, the recruitment of PRC2 lacks sequence specificity and, to date, the molecular mechanisms that define which genomic locations are destined for PRC2-mediated silencing remain unknown. The presence of a long non-coding RNA (lncRNA)-binding pocket on EZH2 suggests that lncRNA could potentially mediate PRC2 recruitment to specific genomic regions. Here, we coupled RNA immunoprecipitation sequencing, RNA-sequencing and chromatin immunoprecipitation-sequencing analysis of human multiple myeloma primary cells and cell lines to identify potential lncRNA partners to EZH2. We found that the lncRNA plasmacytoma variant translocation 1 (PVT1) directly interacts with EZH2 and is overexpressed in patients with a poor prognosis. Moreover, genes predicted to be targets of PVT1 exhibited H3K27me3 enrichment and were associated with pro-apoptotic and tumor suppressor functions. In fact, PVT1 inhibition independently promotes the expression of the PRC2 target genes ZBTB7C, RNF144A and CCDC136. Altogether, our work suggests that PVT1 is an interacting partner in PRC2-mediated silencing of tumor suppressor and pro-apoptotic genes in multiple myeloma, making it a highly interesting potential therapeutic target.


Asunto(s)
Mieloma Múltiple , ARN Largo no Codificante , Humanos , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Proteína Potenciadora del Homólogo Zeste 2/genética , ARN Largo no Codificante/genética , Línea Celular Tumoral , Genómica , Péptidos y Proteínas de Señalización Intracelular
17.
Nat Chem Biol ; 18(8): 821-830, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35578032

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype with the worst prognosis and few effective therapies. Here we identified MS023, an inhibitor of type I protein arginine methyltransferases (PRMTs), which has antitumor growth activity in TNBC. Pathway analysis of TNBC cell lines indicates that the activation of interferon responses before and after MS023 treatment is a functional biomarker and determinant of response, and these observations extend to a panel of human-derived organoids. Inhibition of type I PRMT triggers an interferon response through the antiviral defense pathway with the induction of double-stranded RNA, which is derived, at least in part, from inverted repeat Alu elements. Together, our results represent a shift in understanding the antitumor mechanism of type I PRMT inhibitors and provide a rationale and biomarker approach for the clinical development of type I PRMT inhibitors.


Asunto(s)
Proteína-Arginina N-Metiltransferasas , Neoplasias de la Mama Triple Negativas , Biomarcadores , Línea Celular Tumoral , Humanos , Interferones/uso terapéutico , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo
18.
Theor Appl Genet ; 137(1): 24, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38236415

RESUMEN

KEY MESSAGE: A novel quantitative trait locus qIGL1, which performed a positive function in regulating grain length in rice, was cloned by the map-based cloning approach; further studies revealed that it corresponded to LOC_Os03g30530, and the IGL1 appeared to contribute to lengthening and widening of the cells on the surface of grain hulls. Grain length is a prominent determinant for grain weight and appearance quality of rice. In this study, we conducted quantitative trait locus mapping to determine a genomic interval responsible for a long-grain phenotype observed in a japonica cultivar HD385. This led to the identification of a novel QTL for grain length on chromosome 3, named qIGL1 (for Increased Grain Length 1); the HD385 (Handao 385)-derived allele showed enhancement effects on grain length, and such an allele as well as NIP (Nipponbare)-derived allele was designated qigl1 HD385 and qIGL1NIP, respectively. Genetic analysis revealed that the qigl1HD385 allele displayed semidominant effects on grain length. Fine mapping further narrowed down the qIGL1 to an ~ 70.8-kb region containing 9 open reading frames (ORFs). A comprehensive analysis indicated that LOC_Os03g30530, which corresponded to ORF6 and carried base substitutions and deletions in HD385 relative to NIP, thereby causing changes or losses of amino-acid residues, was the true gene for qIGL1. Comparison of grain traits between a pair of near-isogenic lines (NILs), termed NIL-igl1HD385 and NIL-IGL1NIP, discovered that introduction of the igl1HD385 into the NIP background significantly resulted in the elevations of grain length and 1000-grain weight. Closer inspection of grain surfaces revealed that the cell length and width in the longitudinal direction were significantly longer and greater, respectively, in NIL-igl1HD385 line compared with in NIL-IGL1NIP line. Hence, our studies identified a new semidominant natural allele contributing to the increase of grain length and further shed light on the regulatory mechanisms of grain length.


Asunto(s)
Oryza , Sitios de Carácter Cuantitativo , Oryza/genética , Alelos , Mapeo Cromosómico , Aminoácidos , Grano Comestible/genética
19.
Artículo en Inglés | MEDLINE | ID: mdl-38625452

RESUMEN

We examined the integrity of flash-frozen and cryo-sectioned cardiac muscle preparations (introduced by Feng and Jin, 2020) by assessing tension transients in response to sinusoidal length changes at varying frequencies (1-100 Hz) at 25 °C. Using 70-µm-thick sections, we isolated fiber preparations to study cross-bridge (CB) kinetics: preparations were activated by saturating Ca2+ as well as varying concentrations of ATP and phosphate (Pi). Our results showed that, compared to ordinary skinned fibers, in-series stiffness decreased to 1/2, which resulted in a decrease of isometric tension to 62%, but CB kinetics and Ca2+ sensitivity were little affected. The pCa study demonstrated that the rate constant of the force generation step (2πb) is proportionate to [Ca2+] at < 5 µM, suggesting that the activation mechanism can be described by a simple second order reaction. We also found that tension, stiffness, and magnitude parameters are related to [Ca2+] by the Hill equation, with a cooperativity coefficient of 4-5, which is consistent with the fact that Ca2+ activation mechanisms involve cooperative multimolecular interactions. Our results support the long-held hypothesis that Process C (Phase 2) represents the CB detachment step, and Process B (Phase 3) represents the force generation step. Moreover, we discovered that constant H may represent the work-performing step in cardiac preparations. Our experiments demonstrate excellent CB kinetics with two well-defined exponentials that can be more distinguished than those found using ordinary skinned fibers. Flash-frozen and cryo-sectioned preparations are especially suitable for multi-institutional collaborations nationally and internationally because of their ease of transportation.

20.
Langmuir ; 40(22): 11548-11557, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38780514

RESUMEN

Water incorporated with supramolecular building blocks in organic solvents can play a key role in the circularly polarized luminescence (CPL) inversion and amplification of supramolecular assemblies. Herein, we demonstrate that fine-tuning the water content regulated the assembly structure evolution and made the circular dichroism and CPL sign of the system undergo intriguing inversion, reinversion, and amplification processes based on a unique and interesting glutamide-cyanostilbene system, as supported by morphology, spectroscopic observations, and time-dependent density functional theory calculation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA