Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Nat Mater ; 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589541

RESUMEN

Robust ferroelectricity in nanoscale fluorite oxide-based thin films enables promising applications in silicon-compatible non-volatile memories and logic devices. However, the polar orthorhombic (O) phase of fluorite oxides is a metastable phase that is prone to transforming into the ground-state non-polar monoclinic (M) phase, leading to macroscopic ferroelectric degradation. Here we investigate the reversibility of the O-M phase transition in ZrO2 nanocrystals via in situ visualization of the martensitic transformation at the atomic scale. We reveal that the reversible shear deformation pathway from the O phase to the monoclinic-like (M') state, a compressive-strained M phase, is protected by 90° ferroelectric-ferroelastic switching. Nevertheless, as the M' state gradually accumulates localized strain, a critical tensile strain can pin the ferroelastic domain, resulting in an irreversible M'-M strain relaxation and the loss of ferroelectricity. These findings demonstrate the key role of ferroelastic switching in the reversibility of phase transition and also provide a tensile-strain threshold for stabilizing the metastable ferroelectric phase in fluorite oxide thin films.

2.
Small ; 19(43): e2304146, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37356048

RESUMEN

The quantum phase transition caused by regulating the electronic correlation in strongly correlated quantum materials has been a research hotspot in condensed matter science. Herein, a photon-induced quantum phase transition from the Kondo-Mott insulating state to the low temperature metallic one accompanying with the magnetoresistance changing from negative to positive in the infinite-layer NdNiO2 films is reported, where the antiferromagnetic coupling among the Ni1+ localized spins and the Kondo effect are effectively suppressed by manipulating the correlation of Ni-3d and Nd-5d electrons under the photoirradiation. Moreover, the critical temperature Tc of the superconducting-like transition exhibits a dome-shaped evolution with the maximum up to ≈42 K, and the electrons dominate the transport process proved by the Hall effect measurements. These findings not only make the photoinduction a promising way to control the quantum phase transition by manipulating the electronic correlation in Mott-like insulators, but also shed some light on the possibility of the superconducting in electron-doped nickelates.

3.
Opt Express ; 31(6): 10348-10357, 2023 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-37157583

RESUMEN

We report the slow-light enhanced spin-resolved in-plane emission from a single quantum dot (QD) in a photonic crystal waveguide (PCW). The slow light dispersions in PCWs are designed to match the emission wavelengths of single QDs. The resonance between two spin states emitted from a single QD and a slow light mode of a waveguide is investigated under a magnetic field with Faraday configuration. Two spin states of a single QD experience different degrees of enhancement as their emission wavelengths are shifted by combining diamagnetic and Zeeman effects with an optical excitation power control. A circular polarization degree up to 0.81 is achieved by changing the off-resonant excitation power. Strongly polarized photon emission enhanced by a slow light mode shows great potential to attain controllable spin-resolved photon sources for integrated optical quantum networks on chip.

4.
Nano Lett ; 22(6): 2177-2186, 2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35239344

RESUMEN

Strong exciton-plasmon interactions between layered two-dimensional (2D) semiconductors and gap plasmons show a great potential to implement cavity quantum electrodynamics under ambient conditions. However, achieving a robust plasmon-exciton coupling with nanocavities is still very challenging, because the layer area is usually small in the conventional approaches. Here, we report on a robust strong exciton-plasmon coupling between the gap mode of a bowtie and the excitons in MoS2 layers with gold-assisted mechanical exfoliation and nondestructive wet transfer techniques for a large-area layer. Due to the ultrasmall mode volume and strong in-plane field, the estimated effective exciton number contributing to the coupling is largely reduced. With a corrected exciton transition dipole moment, the exciton numbers are extracted as being 40 for the case of a single layer and 48 for eight layers. Our work paves the way to realize strong coupling with 2D materials with a small number of excitons at room temperature.

5.
Angew Chem Int Ed Engl ; 62(44): e202308921, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37668952

RESUMEN

Covalent organic frameworks (COFs), as a burgeoning class of crystalline porous materials, have made significant progress in their application to optoelectronic devices such as field-effect transistors, memristors, and photodetectors. However, the insoluble features of microcrystalline two-dimensional (2D) COF powders limit development of their thin film devices. Additionally, the exploration of spin transport properties in this category of π-conjugated skeleton materials remains vacant thus far. Herein, an imine-linked 2D Py-Np COF nanocrystalline powder was synthesized by Schiff base condensation of 4,4',4'',4'''-(pyrene-1,3,6,8-tetrayl)tetraaniline and naphthalene-2,6-dicarbaldehyde. Then, we prepared a large-scale free-standing Py-Np COF film via a top-down strategy of chemically assisted acid exfoliation. Moreover, high-quality COF films acted as active layers were transferred onto ferromagnetic La0.67 Sr0.33 MnO3 (LSMO) electrodes for the first attempt to fabricate organic spin valves (OSVs) based on 2D COF materials. This COF-based OSV device with a configuration of LSMO/Py-Np COF/Co/Au demonstrated a remarkable magnetoresistance (MR) value up to -26.5 % at 30 K. Meanwhile, the MR behavior of the COF-based OSVs exhibited a highly temperature dependence and operational stability. This work highlights the enormous application prospects of 2D COFs in organic spintronics and provides a promising approach for developing electronic and spintronic devices based on acid-exfoliated COF thin films.

6.
Small ; 18(10): e2106029, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35266315

RESUMEN

Monolayer transition metal dichalcogenides have attracted great attention for potential applications in valleytronics. However, the valley polarization degree is usually not high because of the intervalley scattering. Here, a largely enhanced valley polarization up to 80% in monolayer WS2 under nonresonant excitation at 4.2 K is demonstrated using WS2 /LaMnO3 thin film heterostructure, which is much higher than that for monolayer WS2 on SiO2 /Si substrate with a valley polarization of 15%. Furthermore, the greatly enhanced valley polarization can be maintained to a high temperature of about 160 K with a valley polarization of 53%. The temperature dependence of valley polarization is strongly correlated with the thermomagnetic curve of LaMnO3 , indicating an exciton-magnon coupling between WS2 and LaMnO3 . A simple model is introduced to illustrate the underlying mechanisms. The coupling of WS2 and LaMnO3 is further confirmed with an observation of two interlayer excitons with opposite valley polarizations in the heterostructure, resulting from the spin-orbit coupling induced splitting of the conduction bands in monolayer transition metal dichalcogenides. The results provide a pathway to control the valleytronic properties of transition metal dichalcogenides by means of ferromagnetic van der Waals engineering, paving a way to practical valleytronic applications.

7.
Phys Rev Lett ; 128(1): 017202, 2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35061447

RESUMEN

Heterointerfaces have led to the discovery of novel electronic and magnetic states because of their strongly entangled electronic degrees of freedom. Single-phase chromium compounds always exhibit antiferromagnetism following the prediction of the Goodenough-Kanamori rules. So far, exchange coupling between chromium ions via heteroanions has not been explored and the associated quantum states are unknown. Here, we report the successful epitaxial synthesis and characterization of chromium oxide (Cr_{2}O_{3})-chromium nitride (CrN) superlattices. Room-temperature ferromagnetic spin ordering is achieved at the interfaces between these two antiferromagnets, and the magnitude of the effect decays with increasing layer thickness. First-principles calculations indicate that robust ferromagnetic spin interaction between Cr^{3+} ions via anion-hybridization across the interface yields the lowest total energy. This work opens the door to fundamental understanding of the unexpected and exceptional properties of oxide-nitride interfaces and provides access to hidden phases at low-dimensional quantum heterostructures.

8.
Nano Lett ; 21(24): 10507-10515, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34870440

RESUMEN

Orientation control of the oxygen vacancy channel (OVC) is highly desirable for tailoring oxygen diffusion as it serves as a fast transport channel in ion conductors, which is widely exploited in solid-state fuel cells, catalysts, and ion-batteries. Direct observation of oxygen-ion hopping toward preferential vacant sites is a key to clarifying migration pathways. Here we report anisotropic oxygen-ion migration mediated by strain in ultrathin cobaltites via in situ thermal activation in atomic-resolved transmission electron microscopy. Oxygen migration pathways are constructed on the basis of the atomic structure during the OVC switching, which is manifested as the vertical-to-horizontal OVC switching under tensile strain but the horizontal-to-diagonal switching under compression. We evaluate the topotactic structural changes to the OVC, determine the crucial role of the tolerance factor for OVC stability, and establish the strain-dependent phase diagram. Our work provides a practical guide for engineering OVC orientation that is applicable to ionic-oxide electronics.

9.
Nano Lett ; 21(7): 3146-3154, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33750141

RESUMEN

Manipulation of octahedral distortion at atomic scale is an effective means to tune the ground states of functional oxides. Previous work demonstrates that strain and film thickness are variable parameters to modify the octahedral parameters. However, selective control of bonding geometry by structural propagation from adjacent layers is rarely studied. Here we propose a new route to tune the ferromagnetism in SrRuO3 (SRO) ultrathin layers by oxygen coordination of adjacent SrCuO2 (SCO) layers. The infinite-layered CuO2 exhibits a structural transformation from "planar-type" to "chain-type" with reduced film thickness. Two orientations dramatically modify the polyhedral connectivity at the interface, thus altering the octahedral distortion of SRO. The local structural variation changes the spin state of Ru and orbital hybridization strength, leading to a significant change in the magnetoresistance and anomalous Hall resistivity. These findings could launch investigations into adaptive control of functionalities in quantum oxide heterostructures using oxygen coordination.

10.
Opt Express ; 29(10): 14231-14244, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33985147

RESUMEN

We report on controllable cavity modes by controlling the backscattering by two identical scatterers. Periodic changes of the backscattering coupling between two degenerate cavity modes are observed with the changing angle between two scatterers and elucidated by a theoretical model using two-mode approximation and numerical simulations. The periodically appearing single-peak cavity modes indicate mode degeneracy at diabolical points. Interactions between single quantum dots and cavity modes are then investigated. Enhanced emission of a quantum dot with a six-fold intensity increase is obtained in a microdisk at a diabolical point. This method to control cavity modes allows large-scale integration, high reproducibility and flexible design of the size, the location, the quantity and the shape for scatterers, which can be applied for integrated photonic structures with scatterer-modified light-matter interaction.

11.
Opt Express ; 28(21): 31436-31445, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115116

RESUMEN

We have grown VO2 films and combined with terahertz metamaterials to manipulate the memory effect during the insulator-to-metal transition. The temperature-dependent resonant frequency of hybrid structure shows a thermal hysteresis accompanied with frequency shift and bandwidth variation due to the presence of a VO2 dielectric layer. This frequency memory effect significantly depends on the metallic micro-structure. Further theoretical calculation demonstrates this phenomenon mainly originates from the different coupling strength between VO2 and metallic structures. Our findings could facilitate the application of VO2 films in the smart window and dynamical terahertz modulators.

12.
Phys Rev Lett ; 122(8): 087401, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30932617

RESUMEN

Large coupling strengths in exciton-photon interactions are important for the quantum photonic network, while strong cavity-quantum dot interactions have been focused on s-shell excitons with small coupling strengths. Here we demonstrate strong interactions between cavities and p-shell excitons with a great enhancement by the in situ wave-function control. The p-shell excitons are demonstrated with much larger wave-function extents and nonlocal interactions beyond the dipole approximation. Then the interaction is tuned from the nonlocal to the local regime by the wave function shrinking, during which the enhancement is obtained. A large coupling strength of 210 µeV has been achieved, indicating the great potential of p-shell excitons for coherent information exchange. Furthermore, we propose a distributed delay model to quantitatively explain the coupling strength variation, revealing the intertwining of excitons and photons beyond the dipole approximation.

13.
Small ; 14(17): e1704429, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29611286

RESUMEN

Defects are detrimental for optoelectronics devices, such as stacking faults can form carrier-transportation barriers, and foreign impurities (Au) with deep-energy levels can form carrier traps and nonradiative recombination centers. Here, self-catalyzed p-type GaAs nanowires (NWs) with a pure zinc blende (ZB) structure are first developed, and then a photodetector made from these NWs is fabricated. Due to the absence of stacking faults and suppression of large amount of defects with deep energy levels, the photodetector exhibits room-temperature high photoresponsivity of 1.45 × 105 A W-1 and excellent specific detectivity (D*) up to 1.48 × 1014 Jones for a low-intensity light signal of wavelength 632.8 nm, which outperforms previously reported NW-based photodetectors. These results demonstrate these self-catalyzed pure-ZB GaAs NWs to be promising candidates for optoelectronics applications.

14.
Phys Rev Lett ; 120(21): 213901, 2018 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-29883144

RESUMEN

Two-photon Rabi splitting in a cavity-dot system provides a basis for multiqubit coherent control in a quantum photonic network. Here we report on two-photon Rabi splitting in a strongly coupled cavity-dot system. The quantum dot was grown intentionally large in size for a large oscillation strength and small biexciton binding energy. Both exciton and biexciton transitions couple to a high-quality-factor photonic crystal cavity with large coupling strengths over 130 µeV. Furthermore, the small binding energy enables the cavity to simultaneously couple with two exciton states. Thereby, two-photon Rabi splitting between the biexciton and cavity is achieved, which can be well reproduced by theoretical calculations with quantum master equations.

15.
Appl Opt ; 56(30): 8348-8352, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29091611

RESUMEN

Analogous with scanning electron microscopy, we use an oblique-incidence reflectivity difference (OIRD) approach for morphology detection. By scanning the active carbon clusters in a one-dimensional way and the reservoir rocks in a two-dimensional way, the morphology of the samples' surface can be revealed in OIRD signal images. High OIRD signals of active carbon samples refer to the centralized distribution areas of carbon, and the fluctuations are caused by the uneven distribution of carbon pellets. OIRD intensity is proportional to the thickness of materials. In terms of rocks, the trough areas with smaller values refer to the low-lying fields. The areas with relatively large OIRD intensities correspond to the protuberance areas of rocks. Consequently, OIRD is a sensitive yet rapid measure of surface detection in material and petrogeology science.

16.
Nanotechnology ; 27(35): 355604, 2016 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-27454488

RESUMEN

BiFeO3 (BFO) ultrathin films with nominal thicknesses from 2 to 12 nm were grown with a SrRuO3 (SRO) buffer layer on TiO2-terminated (001) SrTiO3 (STO) substrates using pulsed laser deposition. The surface morphologies and domain configurations of the thin films were investigated using atomic force microscopy and piezoelectric force microscopy. Periodical one-dimensional finger-like nanostripes of BFO on the SRO covered STO substrates were observed. With increasing thickness, the BFO ultrathin films develop from the finger-like nanostripes to an atomically flat surface. The formation of the finger-like nanostructures of BFO is related to the atomic step or terrace structure of the substrate. The BFO nanostripes and the atomically flat thin films both show good ferroelectricity. The as-grown domain orientations of the BFO ultrathin films are ascribed to the chemical terminations at the surface of the SRO layer. These results indicate that the surface morphologies and the domain configurations of BFO ultrathin films can be artificially designed by using substrates with optimized terrace structures and chemical termination, and these films are potentially useful in multifunctional nanoelectronic devices.

17.
Appl Opt ; 55(9): 2259-62, 2016 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-27140560

RESUMEN

We report a visible-blind ultraviolet photoconductive detector with interdigitated electrodes based on KTaO3 (KTO) single crystals. Both the steady spectral responses and the transient photovoltaic measurements clearly exhibit a cutoff wavelength at 344 nm (∼3.6 eV), in accordance with the bandgap of KTO. The KTO photodetectors show a low dark current ∼1.5 pA at 20 V, and a high UV-to-visible rejection ratio with 3 orders of magnitude at room temperature. The quantum efficiency is 37.49% under 20 V bias, and the detectivity D* of 3.85×1012 cm·Hz0.5/W, which is comparable to that of silicon photodetectors in the UV region. The rise time of photoelectric response is ∼260 ps, indicating an ultrafast photoelectric response characteristic. The present work offers appealing prospects for the application of KTO materials in high-performance visible blind ultraviolet photodetectors.

18.
Appl Opt ; 54(18): 5822-8, 2015 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-26193035

RESUMEN

We investigate four types of gold nanoantennae (the monopole, the dipole, the cone-shaped, and the cone-bowtie antenna), under a fixed working wavelength. The finite-difference time-domain (FDTD) simulations show that the near-field enhancement values do not increase monotonously when the antennae sizes decrease, and optimization conditions vary with the antenna shapes. We also propose a distributed dipole ring model to analytically calculate the near field. The size condition for the strongest enhancement is the compromising result of the total radiated energy and the near-field distribution factor. Assuming the cone-bowtie antenna is the best for high enhancement, the maximum potential in near-field enhancement is 2×10(5) for a linear signal or 4×10(10) for typical nonlinear signals.

19.
Opt Express ; 22(16): 19375-85, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25321022

RESUMEN

Reduced graphene oxides with varying degrees of reduction have been produced by hydrazine reduction of graphene oxide. The linear and nonlinear optical properties of both graphene oxide as well as the reduced graphene oxides have been measured by single beam Z-scan measurement in the picosecond region. The results reveal both saturable absorption and two-photon absorption, strongly dependent on the intensity of the pump pulse: saturable absorption occurs at lower pump pulse intensity (~1.5 GW/cm2 saturation intensity) whereas two-photon absorption dominates at higher intensities (≥5.7 GW/cm2). Intriguingly, we find that the two-photon absorption coefficient (from 1.5 cm/GW to 4.5cm/GW) and the saturation intensity (from 1 GW/cm2 to 2 GW/cm2) vary with chemical reduction, which is ascribed to the varying concentrations of sp2 domains and sp2 clusters in the reduced graphene oxides. Our results not only provide an insight into the evolution of the nonlinear optical coefficient in reduced graphene oxide, but also suggest that chemical engineering techniques may usefully be applied to tune the nonlinear optical properties of various nano-materials, including atomically thick graphene sheets.

20.
Sci Adv ; 10(20): eado1281, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748802

RESUMEN

The twist engineering of moiré superlattice in van der Waals heterostructures of transition metal dichalcogenides can manipulate valley physics of interlayer excitons (IXs), paving the way for next-generation valleytronic devices. However, the twist angle-dependent control of excitonic potential on valley polarization is not investigated so far in electrically controlled heterostructures and the physical mechanism underneath needs to be explored. Here, we demonstrate the dependence of both polarization switching and degree of valley polarization on the moiré period. We also find the mechanisms to reveal the modulation of twist angle on the exciton potential and the electron-hole exchange interaction, which elucidate the experimentally observed twist angle-dependent valley polarization of IXs. Furthermore, we realize the valley-addressable devices based on polarization switch. Our work demonstrates the manipulation of the valley polarization of IXs by tunning twist angle in electrically controlled heterostructures, which opens an avenue for electrically controlling the valley degrees of freedom in twistronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA