Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 35, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38254030

RESUMEN

BACKGROUND: Natural proteins occupy a small portion of the protein sequence space, whereas artificial proteins can explore a wider range of possibilities within the sequence space. However, specific requirements may not be met when generating sequences blindly. Research indicates that small proteins have notable advantages, including high stability, accurate resolution prediction, and facile specificity modification. RESULTS: This study involves the construction of a neural network model named TopoProGenerator(TPGen) using a transformer decoder. The model is trained with sequences consisting of a maximum of 65 amino acids. The training process of TopoProGenerator incorporates reinforcement learning and adversarial learning, for fine-tuning. Additionally, it encompasses a stability predictive model trained with a dataset comprising over 200,000 sequences. The results demonstrate that TopoProGenerator is capable of designing stable small protein sequences with specified topology structures. CONCLUSION: TPGen has the ability to generate protein sequences that fold into the specified topology, and the pretraining and fine-tuning methods proposed in this study can serve as a framework for designing various types of proteins.


Asunto(s)
Aminoácidos , Suministros de Energía Eléctrica , Secuencia de Aminoácidos , Lenguaje , Aprendizaje
2.
Comput Biol Chem ; 110: 108067, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714420

RESUMEN

Protein-protein interactions (PPI) play a crucial role in numerous key biological processes, and the structure of protein complexes provides valuable clues for in-depth exploration of molecular-level biological processes. Protein-protein docking technology is widely used to simulate the spatial structure of proteins. However, there are still challenges in selecting candidate decoys that closely resemble the native structure from protein-protein docking simulations. In this study, we introduce a docking evaluation method based on three-dimensional point cloud neural networks named SurfPro-NN, which represents protein structures as point clouds and learns interaction information from protein interfaces by applying a point cloud neural network. With the continuous advancement of deep learning in the field of biology, a series of knowledge-rich pre-trained models have emerged. We incorporate protein surface representation models and language models into our approach, greatly enhancing feature representation capabilities and achieving superior performance in protein docking model scoring tasks. Through comprehensive testing on public datasets, we find that our method outperforms state-of-the-art deep learning approaches in protein-protein docking model scoring. Not only does it significantly improve performance, but it also greatly accelerates training speed. This study demonstrates the potential of our approach in addressing protein interaction assessment problems, providing strong support for future research and applications in the field of biology.


Asunto(s)
Simulación del Acoplamiento Molecular , Redes Neurales de la Computación , Proteínas , Proteínas/química , Proteínas/metabolismo , Propiedades de Superficie
3.
Front Genet ; 14: 1347667, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38274106

RESUMEN

Introduction: Protein engineering, which aims to improve the properties and functions of proteins, holds great research significance and application value. However, current models that predict the effects of amino acid substitutions often perform poorly when evaluated for precision. Recent research has shown that ProteinMPNN, a large-scale pre-training sequence design model based on protein structure, performs exceptionally well. It is capable of designing mutants with structures similar to the original protein. When applied to the field of protein engineering, the diverse designs for mutation positions generated by this model can be viewed as a more precise mutation range. Methods: We collected three biological experimental datasets and compared the design results of ProteinMPNN for wild-type proteins with the experimental datasets to verify the ability of ProteinMPNN in improving protein fitness. Results: The validation on biological experimental datasets shows that ProteinMPNN has the ability to design mutation types with higher fitness in single and multi-point mutations. We have verified the high accuracy of ProteinMPNN in protein engineering tasks from both positive and negative perspectives. Discussion: Our research indicates that using large-scale pre trained models to design protein mutants provides a new approach for protein engineering, providing strong support for guiding biological experiments and applications in biotechnology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA