Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.822
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 160(1-2): 324-38, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25557080

RESUMEN

Pancreatic cancer is one of the most lethal malignancies due to its late diagnosis and limited response to treatment. Tractable methods to identify and interrogate pathways involved in pancreatic tumorigenesis are urgently needed. We established organoid models from normal and neoplastic murine and human pancreas tissues. Pancreatic organoids can be rapidly generated from resected tumors and biopsies, survive cryopreservation, and exhibit ductal- and disease-stage-specific characteristics. Orthotopically transplanted neoplastic organoids recapitulate the full spectrum of tumor development by forming early-grade neoplasms that progress to locally invasive and metastatic carcinomas. Due to their ability to be genetically manipulated, organoids are a platform to probe genetic cooperation. Comprehensive transcriptional and proteomic analyses of murine pancreatic organoids revealed genes and pathways altered during disease progression. The confirmation of many of these protein changes in human tissues demonstrates that organoids are a facile model system to discover characteristics of this deadly malignancy.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Modelos Biológicos , Técnicas de Cultivo de Órganos , Organoides/patología , Neoplasias Pancreáticas/patología , Animales , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Páncreas/metabolismo , Páncreas/patología
2.
Nature ; 613(7942): 195-202, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36544023

RESUMEN

Inhibition of the tumour suppressive function of p53 (encoded by TP53) is paramount for cancer development in humans. However, p53 remains unmutated in the majority of cases of glioblastoma (GBM)-the most common and deadly adult brain malignancy1,2. Thus, how p53-mediated tumour suppression is countered in TP53 wild-type (TP53WT) GBM is unknown. Here we describe a GBM-specific epigenetic mechanism in which the chromatin regulator bromodomain-containing protein 8 (BRD8) maintains H2AZ occupancy at p53 target loci through the EP400 histone acetyltransferase complex. This mechanism causes a repressive chromatin state that prevents transactivation by p53 and sustains proliferation. Notably, targeting the bromodomain of BRD8 displaces H2AZ, enhances chromatin accessibility and engages p53 transactivation. This in turn enforces cell cycle arrest and tumour suppression in TP53WT GBM. In line with these findings, BRD8 is highly expressed with H2AZ in proliferating single cells of patient-derived GBM, and is inversely correlated with CDKN1A, a canonical p53 target that encodes p21 (refs. 3,4). This work identifies BRD8 as a selective epigenetic vulnerability for a malignancy for which treatment has not improved for decades. Moreover, targeting the bromodomain of BRD8 may be a promising therapeutic strategy for patients with TP53WT GBM.


Asunto(s)
Epigénesis Genética , Glioblastoma , Factores de Transcripción , Proteína p53 Supresora de Tumor , Adulto , Humanos , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Histonas/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proliferación Celular
3.
Proc Natl Acad Sci U S A ; 121(28): e2322972121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968116

RESUMEN

Rapid accumulation of repair factors at DNA double-strand breaks (DSBs) is essential for DSB repair. Several factors involved in DSB repair have been found undergoing liquid-liquid phase separation (LLPS) at DSB sites to facilitate DNA repair. RNF168, a RING-type E3 ubiquitin ligase, catalyzes H2A.X ubiquitination for recruiting DNA repair factors. Yet, whether RNF168 undergoes LLPS at DSB sites remains unclear. Here, we identified K63-linked polyubiquitin-triggered RNF168 condensation which further promoted RNF168-mediated DSB repair. RNF168 formed liquid-like condensates upon irradiation in the nucleus while purified RNF168 protein also condensed in vitro. An intrinsically disordered region containing amino acids 460-550 was identified as the essential domain for RNF168 condensation. Interestingly, LLPS of RNF168 was significantly enhanced by K63-linked polyubiquitin chains, and LLPS largely enhanced the RNF168-mediated H2A.X ubiquitination, suggesting a positive feedback loop to facilitate RNF168 rapid accumulation and its catalytic activity. Functionally, LLPS deficiency of RNF168 resulted in delayed recruitment of 53BP1 and BRCA1 and subsequent impairment in DSB repair. Taken together, our finding demonstrates the pivotal effect of LLPS in RNF168-mediated DSB repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína 1 de Unión al Supresor Tumoral P53 , Ubiquitina-Proteína Ligasas , Ubiquitinación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Humanos , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53/genética , Ubiquitina/metabolismo , Histonas/metabolismo , Histonas/genética , Poliubiquitina/metabolismo
4.
Genes Dev ; 33(19-20): 1428-1440, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31488577

RESUMEN

The histone methyltransferase activity of PRC2 is central to the formation of H3K27me3-decorated facultative heterochromatin and gene silencing. In addition, PRC2 has been shown to automethylate its core subunits, EZH1/EZH2 and SUZ12. Here, we identify the lysine residues at which EZH1/EZH2 are automethylated with EZH2-K510 and EZH2-K514 being the major such sites in vivo. Automethylated EZH2/PRC2 exhibits a higher level of histone methyltransferase activity and is required for attaining proper cellular levels of H3K27me3. While occurring independently of PRC2 recruitment to chromatin, automethylation promotes PRC2 accessibility to the histone H3 tail. Intriguingly, EZH2 automethylation is significantly reduced in diffuse intrinsic pontine glioma (DIPG) cells that carry a lysine-to-methionine substitution in histone H3 (H3K27M), but not in cells that carry either EZH2 or EED mutants that abrogate PRC2 allosteric activation, indicating that H3K27M impairs the intrinsic activity of PRC2. Our study demonstrates a PRC2 self-regulatory mechanism through its EZH1/2-mediated automethylation activity.


Asunto(s)
Glioma/enzimología , Glioma/genética , Histonas/metabolismo , Niño , Activación Enzimática , Silenciador del Gen , Histonas/genética , Humanos , Lisina/metabolismo , Metilación , Complejo Represivo Polycomb 2/metabolismo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo
5.
Cell ; 146(6): 969-79, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21906795

RESUMEN

Acetylation of histone and nonhistone proteins is an important posttranslational modification affecting many cellular processes. Here, we report that NuA4 acetylation of Sip2, a regulatory ß subunit of the Snf1 complex (yeast AMP-activated protein kinase), decreases as cells age. Sip2 acetylation, controlled by antagonizing NuA4 acetyltransferase and Rpd3 deacetylase, enhances interaction with Snf1, the catalytic subunit of Snf1 complex. Sip2-Snf1 interaction inhibits Snf1 activity, thus decreasing phosphorylation of a downstream target, Sch9 (homolog of Akt/S6K), and ultimately leading to slower growth but extended replicative life span. Sip2 acetylation mimetics are more resistant to oxidative stress. We further demonstrate that the anti-aging effect of Sip2 acetylation is independent of extrinsic nutrient availability and TORC1 activity. We propose a protein acetylation-phosphorylation cascade that regulates Sch9 activity, controls intrinsic aging, and extends replicative life span in yeast.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Transactivadores/metabolismo , Acetilación , Restricción Calórica , División Celular , Histona Acetiltransferasas/metabolismo , Histona Desacetilasas/metabolismo , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo
6.
Mol Cell ; 70(3): 422-434.e6, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29681499

RESUMEN

PRC2 is a therapeutic target for several types of cancers currently undergoing clinical trials. Its activity is regulated by a positive feedback loop whereby its terminal enzymatic product, H3K27me3, is specifically recognized and bound by an aromatic cage present in its EED subunit. The ensuing allosteric activation of the complex stimulates H3K27me3 deposition on chromatin. Here we report a stepwise feedback mechanism entailing key residues within distinctive interfacing motifs of EZH2 or EED that are found to be mutated in cancers and/or Weaver syndrome. PRC2 harboring these EZH2 or EED mutants manifested little activity in vivo but, unexpectedly, exhibited similar chromatin association as wild-type PRC2, indicating an uncoupling of PRC2 activity and recruitment. With genetic and chemical tools, we demonstrated that targeting allosteric activation overrode the gain-of-function effect of EZH2Y646X oncogenic mutations. These results revealed critical implications for the regulation and biology of PRC2 and a vulnerability in tackling PRC2-addicted cancers.


Asunto(s)
Regulación Alostérica/fisiología , Cromatina/metabolismo , Complejo Represivo Polycomb 2/metabolismo , Anomalías Múltiples/metabolismo , Línea Celular Tumoral , Hipotiroidismo Congénito/metabolismo , Anomalías Craneofaciales/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Deformidades Congénitas de la Mano/metabolismo , Histonas/metabolismo , Humanos , Neoplasias/metabolismo
7.
Proc Natl Acad Sci U S A ; 120(6): e2214889120, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36730196

RESUMEN

We propose a model-free framework for sensitivity analysis of individual treatment effects (ITEs), building upon ideas from conformal inference. For any unit, our procedure reports the Γ-value, a number which quantifies the minimum strength of confounding needed to explain away the evidence for ITE. Our approach rests on the reliable predictive inference of counterfactuals and ITEs in situations where the training data are confounded. Under the marginal sensitivity model of [Z. Tan, J. Am. Stat. Assoc. 101, 1619-1637 (2006)], we characterize the shift between the distribution of the observations and that of the counterfactuals. We first develop a general method for predictive inference of test samples from a shifted distribution; we then leverage this to construct covariate-dependent prediction sets for counterfactuals. No matter the value of the shift, these prediction sets (resp. approximately) achieve marginal coverage if the propensity score is known exactly (resp. estimated). We describe a distinct procedure also attaining coverage, however, conditional on the training data. In the latter case, we prove a sharpness result showing that for certain classes of prediction problems, the prediction intervals cannot possibly be tightened. We verify the validity and performance of the methods via simulation studies and apply them to analyze real datasets.

8.
Nucleic Acids Res ; 51(18): 9733-9747, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37638744

RESUMEN

RAP80 has been characterized as a component of the BRCA1-A complex and is responsible for the recruitment of BRCA1 to DNA double-strand breaks (DSBs). However, we and others found that the recruitment of RAP80 and BRCA1 were not absolutely temporally synchronized, indicating that other mechanisms, apart from physical interaction, might be implicated. Recently, liquid-liquid phase separation (LLPS) has been characterized as a novel mechanism for the organization of key signaling molecules to drive their particular cellular functions. Here, we characterized that RAP80 LLPS at DSB was required for RAP80-mediated BRCA1 recruitment. Both cellular and in vitro experiments showed that RAP80 phase separated at DSB, which was ascribed to a highly disordered region (IDR) at its N-terminal. Meanwhile, the Lys63-linked poly-ubiquitin chains that quickly formed after DSBs occur, strongly enhanced RAP80 phase separation and were responsible for the induction of RAP80 condensation at the DSB site. Most importantly, abolishing the condensation of RAP80 significantly suppressed the formation of BRCA1 foci, encovering a pivotal role of RAP80 condensates in BRCA1 recruitment and radiosensitivity. Together, our study disclosed a new mechanism underlying RAP80-mediated BRCA1 recruitment, which provided new insight into the role of phase separation in DSB repair.

9.
Biochemistry ; 63(8): 958-968, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38426700

RESUMEN

Bispecific antibodies (BsAbs) are undergoing continued development for applications in oncology and autoimmune diseases. While increasing activity by having more than one targeting arm, most BsAb engineering employs single Fc engagement as monoclonal antibodies. Here, we designed a novel immunoglobulin gamma-1 (IgG1)-derived dual-Fc BsAb containing two Fc regions and two distinct asymmetric antigen binding arms comprising a Fab arm and another VHH domain. In conjunction with the knob-into-hole technology, dual-Fc BsAbs could be produced with a high yield and good stability. We explore how Fc engineering effects on dual-Fc constructs could boost the desired therapeutic efficacy. This new format enabled simultaneous bispecific binding to corresponding antigens. Furthermore, compared to the one-Fc control molecules, dual-Fc BsAbs were shown to increase the avidity-based binding to FcγRs to result in higher ADCC and ADCP activities by potent avidity via binding to two antigens and Fc receptors. Overall, this novel BsAb format with enhanced effector functionalities provides a new option for antibody-based immunotherapy.


Asunto(s)
Anticuerpos Biespecíficos , Anticuerpos Biespecíficos/química , Fragmentos Fc de Inmunoglobulinas/genética , Anticuerpos Monoclonales
10.
Mol Cancer ; 23(1): 117, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824567

RESUMEN

Significant advancements have been made in the application of chimeric antigen receptor (CAR)-T treatment for blood cancers during the previous ten years. However, its effectiveness in treating solid tumors is still lacking, necessitating the exploration of alternative immunotherapies that can overcome the significant challenges faced by current CAR-T cells. CAR-based immunotherapy against solid tumors shows promise with the emergence of macrophages, which possess robust phagocytic abilities, antigen-presenting functions, and the ability to modify the tumor microenvironment and stimulate adaptive responses. This paper presents a thorough examination of the latest progress in CAR-M therapy, covering both basic scientific studies and clinical trials. This study examines the primary obstacles hindering the realization of the complete potential of CAR-M therapy, as well as the potential strategies that can be employed to overcome these hurdles. With the emergence of revolutionary technologies like in situ genetic modification, synthetic biology techniques, and biomaterial-supported gene transfer, which provide a wider array of resources for manipulating tumor-associated macrophages, we suggest that combining these advanced methods will result in the creation of a new era of CAR-M therapy that demonstrates improved efficacy, safety, and availability.


Asunto(s)
Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Microambiente Tumoral , Humanos , Neoplasias/terapia , Neoplasias/inmunología , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Inmunoterapia Adoptiva/métodos , Microambiente Tumoral/inmunología , Animales , Inmunoterapia/métodos
11.
Anal Chem ; 96(19): 7634-7642, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38691624

RESUMEN

Chemical derivatization is a widely employed strategy in metabolomics to enhance metabolite coverage by improving chromatographic behavior and increasing the ionization rates in mass spectroscopy (MS). However, derivatization might complicate MS data, posing challenges for data mining due to the lack of a corresponding benchmark database. To address this issue, we developed a triple-dimensional combinatorial derivatization strategy for nontargeted metabolomics. This strategy utilizes three structurally similar derivatization reagents and is supported by MS-TDF software for accelerated data processing. Notably, simultaneous derivatization of specific metabolite functional groups in biological samples produced compounds with stable but distinct chromatographic retention times and mass numbers, facilitating discrimination by MS-TDF, an in-house MS data processing software. In this study, carbonyl analogues in human plasma were derivatized using a combination of three hydrazide-based derivatization reagents: 2-hydrazinopyridine, 2-hydrazino-5-methylpyridine, and 2-hydrazino-5-cyanopyridine (6-hydrazinonicotinonitrile). This approach was applied to identify potential carbonyl biomarkers in lung cancer. Analysis and validation of human plasma samples demonstrated that our strategy improved the recognition accuracy of metabolites and reduced the risk of false positives, providing a useful method for nontargeted metabolomics studies. The MATLAB code for MS-TDF is available on GitHub at https://github.com/CaixiaYuan/MS-TDF.


Asunto(s)
Metabolómica , Programas Informáticos , Humanos , Metabolómica/métodos , Neoplasias Pulmonares/metabolismo , Piridinas/química
12.
BMC Microbiol ; 24(1): 238, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961393

RESUMEN

OBJECTIVES: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is extensively employed for the identification of filamentous fungi on MALDI Biotyper (Bruker Daltonics) and Vitek MS (biomerieux), but the performance of fungi identification on new EXS2600 (Zybio) is still unknow. Our study aims to evaluate the new EXS2600 system's (Zybio) ability to rapidly identify filamentous fungi and determine its effect on turnaround time (TAT) in our laboratory. METHODS: We tested 117 filamentous fungi using two pretreatment methods: the formic acid sandwich (FA-sandwich) and a commercial mold extraction kit (MEK, Zybio). All isolates were confirmed via sequence analysis. Laboratory data were extracted from our laboratory information system over two 9-month periods: pre-EXS (April to December 2022) and post-EXS (April to December 2023), respectively. RESULTS: The total correct identification (at the species, genus, or complex/group level) rate of fungi was high, FA-sandwich (95.73%, 112/117), followed by MEK (94.02%, 110/117). Excluding 6 isolates not in the database, species-level identification accuracy was 92.79% (103/111) for FA-sandwich and 91.89% (102/111) for MEK; genus-level accuracy was 97.29% (108/111) and 96.39% (107/111), respectively. Both methods attained a 100% correct identification rate for Aspergillus, Lichtheimia, Rhizopus Mucor and Talaromyces species, and were able to differentiate between Fusarium verticillioides and Fusarium proliferatum within the Fusarium fujikuroi species complex. Notably, high confidence was observed in the species-level identification of uncommon fungi such as Trichothecium roseum and Geotrichum candidum. The TAT for all positive cultures decreased from pre EXS2600 to post (108.379 VS 102.438, P < 0.05), and the TAT for tissue decreased most (451.538 VS 222.304, P < 0.001). CONCLUSIONS: The FA-sandwich method is more efficient and accurate for identifying filamentous fungi with EXS2600 than the MEK. Our study firstly evaluated the performance of fungi identification on EXS2600 and showed it is suitable for clinical microbiology laboratories use.


Asunto(s)
Formiatos , Hongos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Hongos/clasificación , Hongos/aislamiento & purificación , Hongos/química , Hongos/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Formiatos/química
13.
Clin Proteomics ; 21(1): 12, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38389054

RESUMEN

Mass spectrometry (MS) assays offer exceptional capabilities in high multiplexity, specificity, and throughput. As proteomics technologies continue advancements to identify new disease biomarkers, transition of these innovations from research settings to clinical applications becomes imperative. To meet the rigorous regulatory standards of clinical laboratories, development of a clinical protein MS assay necessitates adherence to stringent criteria. To illustrate the process, this project focused on using thyroglobulin (Tg) as a biomarker and an immuno-multiple reaction monitoring (iMRM) MS-based assay as a model for establishing a Clinical Laboratory Improvement Amendments (CLIA) compliant laboratory within the Centers of Genomic and Precision Medicine, National Taiwan University. The chosen example also illustrates the clinical utility of MS assays to complement conventional immunoassay-based methods, particularly in cases where the presence of autoantibodies in 10-30% of patients hinders accuracy. The laboratory design entails a comprehensive coordination in spatial layout, workflow organization, equipment selection, ventilation systems, plumbing, electrical infrastructure, documentation procedures, and communication protocols. Practical aspects of the transformation process, including preparing laboratory facilities, testing environments, instrument validation, assay development and validation, quality management, sample testing, and personnel competency, are discussed. Finally, concordant results in proficiency testing demonstrate the harmonization with the University of Washington Medical Center and the quality assurance of the CLIA-equivalent Tg-iMRM MS assay established in Taiwan. The realization of this model protein MS assay in Taiwan highlights the feasibility of international joint development and provides a detailed reference map to expedite the implementation of more MS-based protein assays in clinical laboratories for patient care.

14.
Chemistry ; 30(15): e202303586, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38079233

RESUMEN

Liquid crystalline nanoparticles (LC NPs) are a kind of polymer NPs with LC mesogens, which can form special anisotropic morphologies due to the influence of LC ordering. Owing to the stimuli-responsiveness of the LC blocks, LC NPs show abundant morphology evolution behaviors in response to external regulation. LC NPs have great application potential in nano-devices, drug delivery, special fibers and other fields. Polymerization-induced self-assembly (PISA) method can synthesize LC NPs at high solid content, reducing the harsh demand for reaction solvent of the LC polymers, being a better choice for large-scale production. In this review, we introduced recent research progress of PISA-LC NPs by dividing them into several parts according to the LC mesogen, and discussed the improvement of experimental conditions and the potential application of these polymers.

15.
Hematol Oncol ; 42(2): e3264, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38461410

RESUMEN

In addition to RUNX1::RUNX1T1 transcript levels, measurable residual disease monitoring using KIT mutant (KITmut ) DNA level is reportedly predictive of relapse in t (8; 21) acute myeloid leukemia (AML). However, the usefulness of KITmut transcript levels remains unknown. A total of 202 bone marrow samples collected at diagnosis and during treatment from 52 t (8; 21) AML patients with KITmut (D816V/H/Y or N822K) were tested for KITmut transcript levels using digital polymerase chain reaction. The individual optimal cutoff values of KITmut were identified by performing receiver operating characteristics curve analysis for relapse at each of the following time points: at diagnosis, after achieving complete remission (CR), and after Course 1 and 2 consolidations. The cutoff values were used to divide the patients into the KITmut -high (KIT_H) group and the KITmut -low (KIT_L) group. The KIT_H patients showed significantly lower relapse-free survival (RFS) and overall survival (OS) rates than the KIT_L patients after Course 1 consolidation (p = 0.0040 and 0.021, respectively) and Course 2 consolidation (p = 0.018 and 0.011, respectively) but not at diagnosis and CR. The <3-log reduction in the RUNX1::RUNX1T1 transcript levels after Course 2 consolidation was an independent adverse prognostic factor for RFS and OS. After Course 2 consolidation, the KIT_H patients with >3-log reduction in the RUNX1::RUNX1T1 transcript levels (11/45; 24.4%) had similar RFS as that of patients with <3-log reduction in the RUNX1::RUNX1T1 transcript levels. The combination of KITmut and RUNX1::RUNX1T1 transcript levels after Course 2 consolidation may improve risk stratification in t (8; 21) AML patient with KIT mutation.


Asunto(s)
Leucemia Mieloide Aguda , Proteínas Proto-Oncogénicas c-kit , Humanos , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Neoplasia Residual/genética , Respuesta Patológica Completa , Pronóstico , Recurrencia , Proteína 1 Compañera de Translocación de RUNX1/genética , Translocación Genética , Proteínas Proto-Oncogénicas c-kit/genética
16.
Hematol Oncol ; 42(1): e3251, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38287528

RESUMEN

Zinc finger protein 384 (ZNF384) rearrangement defined a novel subtype of B-cell acute lymphoblastic leukemia (B-ALL). The prognostic significance of ZNF384 fusion transcript levels represented measurable residual disease remains to be explored. ZNF384 fusions were screened out in 57 adult B-ALL patients at diagnosis by real-time quantitative polymerase chain reaction and their transcript levels were serially monitored during treatment. The reduction of ZNF384 fusion transcript levels at the time of achieving complete remission had no significant impact on survival, whereas its ≥2.5-log reduction were significantly associated with higher relapse free survival (RFS) and overall survival (OS) rates after course 1 consolidation (p = 0.022 and = 0.0083) and course 2 consolidation (p = 0.0025 and = 0.0008). Compared with chemotherapy alone, allogeneic hematopoietic stem cell transplantation (allo-HSCT) significantly improved RFS and OS of patients with <2.5-log reduction after course 1 consolidation (p < 0.0001 and = 0.0002) and course 2 consolidation (p = 0.0003 and = 0.019), whereas exerted no significant effects in patients with ≥2.5-log reduction (all p > 0.05). ZNF384 fusion transcript levels after course 1 and course 2 consolidation strongly predict relapse and survival and may guide whether receiving allo-HSCT in adult B-ALL.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Adulto , Humanos , Pronóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/terapia , Factores de Transcripción , Neoplasia Residual/diagnóstico , Recurrencia , Transactivadores/metabolismo , Transactivadores/uso terapéutico
17.
J Pathol ; 259(4): 415-427, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36641763

RESUMEN

CRISPR/Cas9-driven cancer modeling studies are based on the disruption of tumor suppressor genes by small insertions or deletions (indels) that lead to frame-shift mutations. In addition, CRISPR/Cas9 is widely used to define the significance of cancer oncogenes and genetic dependencies in loss-of-function studies. However, how CRISPR/Cas9 influences gain-of-function oncogenic mutations is elusive. Here, we demonstrate that single guide RNA targeting exon 3 of Ctnnb1 (encoding ß-catenin) results in exon skipping and generates gain-of-function isoforms in vivo. CRISPR/Cas9-mediated exon skipping of Ctnnb1 induces liver tumor formation in synergy with YAPS127A in mice. We define two distinct exon skipping-induced tumor subtypes with different histological and transcriptional features. Notably, ectopic expression of two exon-skipped ß-catenin transcript isoforms together with YAPS127A phenocopies the two distinct subtypes of liver cancer. Moreover, we identify similar CTNNB1 exon-skipping events in patients with hepatocellular carcinoma. Collectively, our findings advance our understanding of ß-catenin-related tumorigenesis and reveal that CRISPR/Cas9 can be repurposed, in vivo, to study gain-of-function mutations of oncogenes in cancer. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , beta Catenina/genética , Carcinogénesis/genética , Carcinoma Hepatocelular/genética , Exones/genética , Neoplasias Hepáticas/genética
18.
Cell ; 136(6): 1073-84, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303850

RESUMEN

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) conduct many critical functions through nonhistone substrates in metazoans, but only chromatin-associated nonhistone substrates are known in Saccharomyces cerevisiae. Using yeast proteome microarrays, we identified and validated many nonchromatin substrates of the essential nucleosome acetyltransferase of H4 (NuA4) complex. Among these, acetylation sites (Lys19 and 514) of phosphoenolpyruvate carboxykinase (Pck1p) were determined by tandem mass spectrometry. Acetylation at Lys514 was crucial for enzymatic activity and the ability of yeast cells to grow on nonfermentable carbon sources. Furthermore, Sir2p deacetylated Pck1p both in vitro and in vivo. Loss of Pck1p activity blocked the extension of yeast chronological life span caused by water starvation. In human hepatocellular carcinoma (HepG2) cells, human Pck1 acetylation and glucose production were dependent on TIP60, the human homolog of ESA1. Our findings demonstrate a regulatory function for the NuA4 complex in glucose metabolism and life span by acetylating a critical metabolic enzyme.


Asunto(s)
Gluconeogénesis , Histona Acetiltransferasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilación , Técnicas de Silenciamiento del Gen , Glucosa/metabolismo , Histona Acetiltransferasas/genética , Histona Desacetilasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisina Acetiltransferasa 5 , Complejos Multiproteicos/metabolismo , Fosfoenolpiruvato Carboxiquinasa (GTP)/metabolismo , Análisis por Matrices de Proteínas , Sirtuinas/metabolismo , Agua/metabolismo
19.
Acta Pharmacol Sin ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802569

RESUMEN

Graft-versus-host disease (GVHD), an immunological disorder that arises from donor T cell activation through recognition of host alloantigens, is the major limitation in the application of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Traditional immunosuppressive agents can relieve GVHD, but they induce serious side effects. It is highly required to explore alternative therapeutic strategy. Human amniotic epithelial stem cells (hAESCs) were recently considered as an ideal source for cell therapy with special immune regulatory property. In this study, we evaluated the therapeutic role of hAESCs in the treatment of GVHD, based on our previous developed cGMP-grade hAESCs product. Humanized mouse model of acute GVHD (aGVHD) was established by injection of huPBMCs via the tail vein. For prevention or treatment of aGVHD, hAESCs were injected to the mice on day -1 or on day 7 post-PBMC infusion, respectively. We showed that hAESCs infusion significantly alleviated the disease phenotype, increased the survival rate of aGVHD mice, and ameliorated pathological injuries in aGVHD target organs. We demonstrated that hAESCs directly induced CD4+ T cell polarization, in which Th1 and Th17 subsets were downregulated, and Treg subset was elevated. Correspondingly, the levels of a series of pro-inflammatory cytokines were reduced while the levels of the anti-inflammatory cytokines were upregulated in the presence of hAESCs. We found that hAESCs regulated CD4+ subset polarization in a paracrine mode, in which TGFß and PGE2 were selectively secreted to mediate Treg elevation and Th1/Th17 inhibition, respectively. In addition, transplanted hAESCs preserved the graft-versus-leukemia (GVL) effect by inhibiting leukemia cell growth. More intriguingly, hAESCs infusion in HSCT patients displayed potential anti-GVHD effect with no safety concerns and confirmed the immunoregulatory mechanisms in the preclinical study. We conclude that hAESCs infusion is a promising therapeutic strategy for post-HSCT GVHD without compromising the GVL effect. The clinical trial was registered at www.clinicaltrials.gov as #NCT03764228.

20.
Cereb Cortex ; 33(7): 3773-3786, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35989309

RESUMEN

Humans often need to deal with various forms of information conflicts that arise when they receive inconsistent information. However, it remains unclear how we resolve them and whether the brain may recruit similar or distinct brain mechanisms to process different domains (e.g. social vs. nonsocial) of conflicts. To address this, we used functional magnetic resonance imaging and scanned 50 healthy participants when they were asked to perform 2 Stroop tasks with different forms of conflicts: social (i.e. face-gender incongruency) and nonsocial (i.e. color-word incongruency) conflicts. Neuroimaging results revealed that the ventral lateral prefrontal cortex was generally activated in processing incongruent versus congruent stimuli regardless of the task type, serving as a common mechanism for conflict resolving across domains. Notably, trial-based and model-based results jointly demonstrated that the dorsal and rostral medial prefrontal cortices were uniquely engaged in processing social incongruent stimuli, suggesting distinct neural substrates of social conflict resolving and adaptation. The findings uncover that the common but unique brain mechanisms are recruited when humans resolve and adapt to social conflicts.


Asunto(s)
Mapeo Encefálico , Conflicto Psicológico , Humanos , Encéfalo/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Imagen por Resonancia Magnética , Test de Stroop , Tiempo de Reacción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA