Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.092
Filtrar
Más filtros

Intervalo de año de publicación
1.
Development ; 149(14)2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35735111

RESUMEN

During Drosophila metamorphosis, the ddaC dendritic arborisation sensory neurons selectively prune their larval dendrites in response to steroid hormone ecdysone signalling. The Nrf2-Keap1 pathway acts downstream of ecdysone signalling to promote proteasomal degradation and thereby dendrite pruning. However, how the Nrf2-Keap1 pathway is activated remains largely unclear. Here, we demonstrate that the metabolic regulator AMP-activated protein kinase (AMPK) plays a cell-autonomous role in dendrite pruning. Importantly, AMPK is required for Mical and Headcase expression and for activation of the Nrf2-Keap1 pathway. We reveal that AMPK promotes the Nrf2-Keap1 pathway and dendrite pruning partly via inhibition of the insulin pathway. Moreover, the AMPK-insulin pathway is required for ecdysone signalling to activate the Nrf2-Keap1 pathway during dendrite pruning. Overall, this study reveals an important mechanism whereby ecdysone signalling activates the Nrf2-Keap1 pathway via the AMPK-insulin pathway to promote dendrite pruning, and further suggests that during the nonfeeding prepupal stage metabolic alterations lead to activation of the Nrf2-Keap1 pathway and dendrite pruning.


Asunto(s)
Proteínas de Drosophila , Insulinas , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Dendritas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ecdisona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Insulinas/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Plasticidad Neuronal
2.
Acc Chem Res ; 57(13): 1851-1869, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38902854

RESUMEN

ConspectusThe directed synthesis and functionalization of porous crystalline materials pose significant challenges for chemists. The synergistic integration of different functionalities within an ordered molecular material holds great significance for expanding its applications as functional materials. The presence of coordination bonds connected by inorganic and organic components in molecular materials can not only increase the structural diversity of materials but also modulate the electronic structure and band gap, which further regulates the physical and chemical properties of molecular materials. In fact, porous crystalline materials with coordination bonds, which inherit the merits of both organic and inorganic materials, already showcase their superior advantages in optical, electrical, and magnetic applications. In addition to the inorganic components that provide structural rigidity, organic ligands of various types serve as crucial connectors in the construction of functional porous crystalline materials. In addition, redox activity can endow organic linkers with electrochemical activity, thereby making them a perfect platform for the study of charge transfer with atom-resolved single-crystal structures, and they can additionally serve as stimuli-responsive sites in sensor devices and smart materials.In this Account, we introduce the synthesis, structural characteristics, and applications of porous crystalline materials based on the famous redox-active units, tetrathiafulvalene (TTF) and its analogues, by primarily focusing on metal-organic frameworks (MOFs) and covalent organic frameworks (COFs). TTF, a sulfur-rich conjugated molecule with two reversible and easily accessible oxidation states (i.e., radical TTF•+ cation and TTF2+ dication), and its analogues boast special electrical characteristics that enable them to display switchable redox activity and stimuli-responsive properties. These inherent properties contribute to the enhancement of the optical, electrical, and magnetic characteristics of the resultant porous crystalline materials. Moreover, delving into the charge transfer phenomena, which is key for the electrochemical process within these materials, uncovers a myriad of potential functional applications. The Account is organized into five main sections that correspond to the different properties and applications of these materials: optical, electrical, and magnetic functionalities; energy storage and conversion; and catalysis. Each section provides detailed discussions of synthetic methods, structural characteristics, the physical and chemical properties, and the functional performances of highlighted examples. The Account also discusses future directions by emphasizing the exploration of novel organic units, the transformation between radical cation TTF•+ and dication TTF2+, and the integration of multifunctionalities within these frameworks to foster the development of smart materials for enhanced performance across diverse applications. Through this Account, we aim to highlight the massive potential of TTF and its analogues-based porous crystals in chemistry and material science.

3.
J Am Chem Soc ; 146(13): 9385-9394, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38512124

RESUMEN

The shuttling of polysulfides on the cathode and the uncontrollable growth of lithium dendrites on the anode have restricted the practical application of lithium-sulfur (Li-S) batteries. In this study, a metal-coordinated 3D covalent organic framework (COF) with a homogeneous distribution of nickel-bis(dithiolene) and N-rich triazine centers (namely, NiS4-TAPT) was designed and synthesized, which can serve as bifunctional hosts for both sulfur cathodes and lithium anodes in Li-S batteries. The abundant Ni centers and N-sites in NiS4-TAPT can greatly enhance the adsorption and conversion of the polysulfides. Meanwhile, the presence of Ni-bis(dithiolene) centers enables uniform Li nucleation at the Li anode, thereby suppressing the growth of Li dendrites. This work demonstrated the effectiveness of integrating catalytic and adsorption sites to optimize the chemical interactions between host materials and redox-active intermediates, potentially facilitating the rational design of metal-coordinated COF materials for high-performance secondary batteries.

4.
J Am Chem Soc ; 146(29): 20439-20448, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38993055

RESUMEN

The electrocatalytic nitrate reduction reaction (NITRR) holds great promise for purifying wastewater and producing valuable ammonia (NH3). However, the lack of efficient electrocatalysts has impeded the achievement of highly selective NH3 synthesis from the NITRR. In this study, we report the design and synthesis of two polynuclear Co-cluster-based coordination polymers, {[Co2(TCPPDA)(H2O)5]·(H2O)9(DMF)} and {Co1.5(TCPPDA)[(CH3)2NH2]·(H2O)6(DMF)2} (namely, NJUZ-2 and NJUZ-3), which possess distinct coordination motifs with well-defined porosity, high-density catalytic sites, accessible mass transfer channels, and nanoconfined chemical environments. Benefitting from their intriguing multicore metal-organic coordination framework structures, NJUZ-2 and NJUZ-3 exhibit remarkable catalytic activities for the NITRR. At a potential of -0.8 V (vs. RHE) in an H-type cell, they achieve an optimal Faradaic efficiency of approximately 98.5% and high long-term durability for selective NH3 production. Furthermore, the electrocatalytic performance is well maintained even under strongly acidic conditions. When operated under an industrially relevant current density of 469.9 mA cm-2 in a flow cell, a high NH3 yield rate of up to 3370.6 mmol h-1 g-1cat. was observed at -0.5 V (vs. RHE), which is 20.1-fold higher than that obtained in H-type cells under the same conditions. Extensive experimental analyses, in combination with theoretical computations, reveal that the great enhancement of the NITRR activity is attributed to the preferential adsorption of NO3- and the reduction in energy input required for the hydrogenation of *NO3 and *NO2 intermediates.

5.
Apoptosis ; 29(1-2): 243-266, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37670104

RESUMEN

A particular GTPase-activating protein called RACGAP1 is involved in apoptosis, proliferation, invasion, metastasis, and drug resistance in a variety of malignancies. Nevertheless, the role of RACGAP1 in pan-cancer was less studied, and its value of the expression and prognostic of nasopharyngeal carcinoma (NPC) has not been explored. Hence, the goal of this study was to investigate the oncogenic and immunological roles of RACGAP1 in various cancers and its potential value in NPC. We comprehensively analyzed RACGAP1 expression, prognostic value, function, methylation levels, relationship with immune cells, immune infiltration, and immunotherapy response in pan-cancer utilizing multiple databases. The results discovered that RACGAP1 expression was elevated in most cancers and suggested poor prognosis, which could be related to the involvement of RACGAP1 in various cancer-related pathways such as the cell cycle and correlated with RACGAP1 methylation levels, immune cell infiltration and reaction to immunotherapy, and chemoresistance. RACGAP1 could inhibit anti-tumor immunity and immunotherapy responses by fostering immune cell infiltration and cytotoxic T lymphocyte dysfunction. Significantly, we validated that RACGAP1 mRNA and protein were highly expressed in NPC. The Gene Expression Omnibus database revealed that elevated RACGAP1 expression was associated with shorter PFS in patients with NPC, and RACGAP1 potentially influenced cell cycle progression, DNA replication, metabolism, and immune-related pathways, resulting in the recurrence and metastasis of NPC. This study indicated that RACGAP1 could be a potential biomarker in pan-cancer and NPC.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Apoptosis/genética , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Neoplasias Nasofaríngeas/genética
6.
Small ; 20(40): e2402255, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38837847

RESUMEN

The application of electrically conductive 1D coordination polymers (1D CPs) in nanoelectronic molecular recognition is theoretically promising yet rarely explored due to the challenges in their synthesis and optimization of electrical properties. In this regard, two tetrathiafulvalene-based 1D CPs, namely [Co(m-H2TTFTB)(DMF)2(H2O)]n (Co-m-TTFTB), and {[Ni(m-H2TTFTB)(CH3CH2OH)1.5(H2O)1.5]·(H2O)0.5}n (Ni-m-TTFTB) are successfully constructed. The shorter S···S contacts between the [M(solvent)3(m-H2TTFTB)]n chains contribute to a significant improvement in their electrical conductivities. The powder X-ray diffraction (PXRD) under different organic solvents reveals the flexible and dynamic structural characteristic of M-m-TTFTB, which, combined with the 1D morphology, lead to their excellent performance for sensitive detection of volatile organic compounds. Co-m-TTFTB achieves a limit of detection for ethanol vapor down to 0.5 ppm, which is superior to the state-of-the-art chemiresistive sensors based on metal-organic frameworks or organic polymers at room temperature. In situ diffuse reflectance infrared Fourier transform spectroscopy, PXRD measurements and density functional theory calculations reveal the molecular insertion sensing mechanism and the corresponding structure-function relationship. This work expands the applicable scenario of 1D CPs and opens a new realm of 1D CP-based nanoelectronic sensors for highly sensitive room temperature gas detection.

7.
Small ; 20(14): e2308013, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37988642

RESUMEN

Redox-active tetrathiafulvalene (TTF)-based covalent organic frameworks (COFs) exhibit distinctive electrochemical and photoelectrical properties, but their prevalent two-dimensional (2D) structure with densely packed TTF moieties limits the accessibility of redox center and constrains their potential applications. To overcome this challenge, an 8-connected TTF linker (TTF-8CHO) is designed as a new building block for the construction of three-dimensional (3D) COFs. This approach led to the successful synthesis of a 3D COF with the bcu topology, designated as TTF-8CHO-COF. In comparison to its 2D counterpart employing a 4-connected TTF linker, the 3D COF design enhances access to redox sites, facilitating controlled oxidation by I2 or Au3+ to tune physical properties. When irradiated with a 0.7 W cm-2 808 nm laser, the oxidized 3D COF samples ( I X - ${\mathrm{I}}_{\mathrm{X}}^{-}$ @TTF-8CHO-COF and Au NPs@TTF-8CHO-COF) demonstrated rapid temperature increases of 239.3 and 146.1 °C, respectively, which surpassed those of pristine 3D COF (65.6 °C) and the 2D COF counterpart (6.4 °C increment after I2 treatment). Furthermore, the oxidation of the 3D COF heightened its photoelectrical responsiveness under 808 nm laser irradiation. This augmentation in photothermal and photoelectrical response can be attributed to the higher concentration of TTF·+ radicals generated through the oxidation of well-exposed TTF moieties.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38995188

RESUMEN

A Gram-negative, ellipsoidal to short-rod-shaped, motile bacterium was isolated from Beijing's urban air. The isolate exhibited the closest kinship with Noviherbaspirillum aerium 122213-3T, exhibiting 98.4 % 16S rRNA gene sequence similarity. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that it clustered closely with N. aerium 122213-3T, thus forming a distinct phylogenetic lineage within the genus Noviherbaspirillum. The average nucleotide identity and digital DNA-DNA hybridization values between strain I16B-00201T and N. aerium 122213-3T were 84.6 and 29.4 %, respectively. The respiratory ubiquinone was ubiquinone 8. The major fatty acids (>10 %) were summed feature 3 (C16:1ω6c/C16:1ω7c, 43.3 %), summed feature 8 (C18:1ω7c/C18:1ω6c, 15.9 %) and C12:0 (11.0 %). The polyamine profile showed putrescine as the predominant compound. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, unknown lipids and unknown phosphatidylaminolipids. The phenotypic, phylogenetic and chemotaxonomic results consistently supported that strain I16B-00201T represented a novel species of the genus Noviherbaspirillum, for which the name Noviherbaspirillum album sp. nov. is proposed, with I16B-00201T (=CPCC 100848T=KCTC 52095T) designated as the type strain. Its DNA G+C content is 59.4 mol%. Pan-genome analysis indicated that some Noviherbaspirillum species possess diverse nitrogen and aromatic compound metabolism pathways, suggesting their potential value in pollutant treatment.


Asunto(s)
Microbiología del Aire , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Hibridación de Ácido Nucleico , Fosfolípidos , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Ubiquinona , ARN Ribosómico 16S/genética , Beijing , ADN Bacteriano/genética , Ácidos Grasos/análisis , Fosfolípidos/análisis
9.
J Org Chem ; 89(11): 7899-7912, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38728220

RESUMEN

An efficient, practical, and metal-free protocol for the synthesis of silicon-containing isoindolin-1-ones and deuterated analogues via the synergistic combination of an organic photoredox and hydrogen atom transfer process is described. This strategy features mild reaction conditions, high atom economy, and excellent functional group compatibility, delivering a myriad of structurally diverse and valuable products with good to excellent yields.

10.
J Org Chem ; 89(14): 9841-9852, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38917372

RESUMEN

A novel methodology for the synthesis of nitrones via palladium-catalyzed redox cross-coupling of nitro compounds and alcohols is established. The protocol is a mild, convenient, ligand-free, and scalable synthesis method that can be compatible with various nitro compounds and alcohols. Nitrone is a significant multifunctional platform synthon which can be synthesized directly and efficiently via this tactic from commercially available and cheap raw materials.

11.
Org Biomol Chem ; 22(34): 6928-6932, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39119751

RESUMEN

A facile synthetic method for direct C(sp2)-H bond trifluoromethylation of 3-methylene-isoindolin-1-ones under visible-light-induced metal-free conditions is presented. This protocol features mild reaction conditions, broad substrate scope and excellent functional group tolerance, resulting in a range of structurally diverse trifluoromethylated products in good to excellent yields.

12.
Environ Sci Technol ; 58(28): 12719-12730, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38959427

RESUMEN

Chlorofluorocarbons (CFCs) exert a strong greenhouse effect and constitute the largest contributor to ozone depletion. Catalytic removal is considered an effective pathway for eliminating low-concentration CFCs under mild conditions. The key issue is the easy deactivation of the catalysts due to their surface fluorination. We herein report a comparative investigation on catalytic dichlorodifluoromethane (CFC-12) removal in the absence or presence of water over the sulfuric-acid-modified three-dimensionally ordered macroporous vanadia-titania-supported Ru (S-Ru/3DOM VTO) catalysts. The S-Ru/3DOM VTO catalyst exhibited high activity (T90% = 278 °C at space velocity = 40 000 mL g-1 h-1) and good stability within 60 h of on-stream reaction in the presence of 1800 ppm of water due to the improvements in acid site amount and redox ability that promoted the adsorption of CFC-12 and the activation of C-F bonds. Compared with the case under dry conditions, catalytic performance for CFC-12 removal was better over the S-Ru/3DOM VTO catalyst in the presence of water. Water introduction mitigated surface fluorination by the replenishment of hydroxyl groups, inhibited the formation of halogenated byproducts via the surface fluorine species cleaning effect, and promoted the reaction pathway of COX2 (X = Cl/F) → carboxylic acid → CO2.


Asunto(s)
Oxidación-Reducción , Catálisis , Halogenación , Ácidos Sulfúricos/química , Titanio/química , Rutenio/química
13.
Environ Sci Technol ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39270042

RESUMEN

Chlorinated volatile organic compounds come from a wide range of sources and are highly toxic, posing a serious threat to biological health and the environment. Herein, a high-efficiency and energy-saving photothermal synergistic catalytic oxidation method was developed for the removal of 1,2-dichloroethane (1,2-DCE). Compared to traditional thermocatalysis, the 1,2-DCE conversion over Ru-U6S in photothermal synergistic catalysis at 340 °C increased by approximately 44% not only reducing energy consumption but also avoiding the instability of MOF structure caused by high reaction temperature. The excellent photothermal catalytic oxidation activity was derived from the synergistic effect of photo- and thermocatalysis. Ru-U6S demonstrated excellent 1,2-DCE adsorption capacity and stronger light utilization and could produce more reactive oxygen species (•OH and •O2-) after light illumination, which participated in the oxidation reaction, promoting the release of the active site of the catalyst. The results of H2O-TPD and NH3-DRIFTS exhibited that the use of S-containing ligands in the synthesis process increased the hydroxyl groups and Brønsted acid sites, significantly improved the selectivity of CO2 and HCl in the oxidation process, and reduced the release of chlorine-containing byproducts. This work provides a high-efficiency and energy-saving strategy for removing chlorinated volatile organic compounds and increasing the selectivity of ideal products directly with MOFs directly.

14.
J Biochem Mol Toxicol ; 38(4): e23676, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561971

RESUMEN

Although the treatment of ovarian cancer has made great progress, there are still many patients who are not timely detected and given targeted therapy due to unknown pathogenesis. Recent studies have found that hsa_circ_0015326 is upregulated in ovarian cancer and is involved in the proliferation, invasion, and migration of ovarian cancer cells. However, whether hsa_circ_0015326 can be used as a new target of ovarian cancer needs further investigation. Therefore, the effect of hsa_circ_0015326 on epithelial ovarian cancer was investigated in this study. At first, si-hsa_circ_0015326 lentivirus was transfected into epithelial ovarian cancer cells. Then real-time fluorescence quantitative PCR (qRT-PCR) was used to detect hsa_circ_0015326 level. The proliferation of ovarian cancer cells was detected by CCK-8 assay. The horizontal and vertical migration abilities of the cells were detected by wound-healing assay and Transwell assay, respectively. Transwell assay was also used to determine the invasion rate. As for the apoptosis rate, it was assessed by flow cytometry. As a result, the expression level of hsa_circ_0015326 in A2780 and SKOV3 was found to be higher than that in IOSE-80. However, after transfecting si-hsa_circ_0015326 and si-NC into the cells, the proliferation, migration, and invasion abilities of A2780 and SKOV3 cells in the si-hsa_circ_0015326 group were significantly reduced in comparison to those in the si-NC and mock groups, while their apoptosis rates were elevated. Collectively, silencing hsa_circ_0015326 bears the capability of inhibiting the proliferation, migration, and invasion of ovarian cancer cells while increasing apoptosis rate. It can be concluded that hsa_circ_0015326 promotes the malignant biological activities of epithelial ovarian cancer cells.


Asunto(s)
MicroARNs , Neoplasias Ováricas , Humanos , Femenino , ARN/metabolismo , Carcinoma Epitelial de Ovario/genética , ARN Circular/genética , ARN Circular/metabolismo , Línea Celular Tumoral , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Proliferación Celular , Apoptosis , MicroARNs/metabolismo , Movimiento Celular
15.
Bioorg Chem ; 143: 107026, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103330

RESUMEN

A series of novel hybrid compounds were designed, synthesized, and utilized as multi-target drugs to treat Alzheimer's disease (AD) by connecting capsaicin and tacrine moieties. The biological assays indicated that most of these compounds demonstrated strong inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) activities with IC50 values in the nanomolar, as well as good blood-brain barrier permeability. Among the synthesized hybrids, compound 5s displayed the most balanced inhibitory effect on hAChE (IC50 = 69.8 nM) and hBuChE (IC50 = 68.0 nM), and exhibited promising inhibitory activity against ß-secretase-1 (BACE-1) (IC50 = 3.6 µM). Combining inhibition kinetics and molecular model analysis, compound 5s was shown to be a mixed inhibitor affecting both the catalytic active site (CAS) and peripheral anionic site (PAS) of hAChE. Additionally, compound 5s showed low toxicity in PC12 and BV2 cell assays. Moreover, compound 5s demonstrated good tolerance at the dose of up to 2500 mg/kg and exhibited no hepatotoxicity at the dose of 3 mg/kg in mice, and it could effectively improve memory ability in mice. Taken together, these findings suggest that compound 5s is a promising and effective multi-target agent for the potential treatment of AD.


Asunto(s)
Enfermedad de Alzheimer , Tacrina , Ratones , Animales , Tacrina/química , Enfermedad de Alzheimer/tratamiento farmacológico , Capsaicina/farmacología , Capsaicina/uso terapéutico , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Acetilcolinesterasa/metabolismo , Péptidos beta-Amiloides , Simulación del Acoplamiento Molecular , Diseño de Fármacos , Relación Estructura-Actividad
16.
BMC Psychiatry ; 24(1): 334, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698338

RESUMEN

BACKGROUND: This study aimed to explore the gut microbiota and inflammatory factor characteristics in major depressive disorder (MDD) patients with anorexia and to analyze the correlation between gut microbiota and inflammatory factors, anorexia, and HAMD scores. METHODS: 46 MDD patients and 46 healthy controls (HC) were included in the study. The 46 MDD patients were divided into two groups according to whether they had anorexia:20 MDD without anorexia (MDA0 group) and 26 MDD with anorexia (MDA1 group). We used the Hamilton Depression Scale-24 (HAMD-24) to evaluate the depression status of all participants and 16 S ribosomal RNA (16 S rRNA)sequencing to evaluate the composition of the gut microbiota. Inflammatory factors in peripheral blood such as C-reactive protein (CRP) were detected using enzyme-linked immunosorbent assay (ELISA). Spearman's correlation analysis was used to evaluate the correlation between gut microbiota and inflammatory factors, HAMD scores, and anorexia. RESULTS: 1). CRP was significantly higher in the MDA0, MDA1, than HC. 2). An analysis of α-diversity shows: the Simpson and Pielou indices of the HC group are higher than the MDA1 group (P < 0.05). 3). The ß-diversity analysis shows differences in the composition of microbial communities between the MDA0, MDA1, and HC group. 4). A correlation analysis showed that Blautia positively correlated with anorexia, HAMD scores, and CRP level, whereas Faecalibacterium, Bacteroides, Roseburia, and Parabacteroides negatively correlated with anorexia, HAMD scores, and CRP level. 5). The receiver operating characteristic (ROC) curve was drawn using the differential bacterial genera between MDD patients with or without anorexia as biomarkers to identify whether MDD patients were accompanied with anorexia, and its area under curve (AUC) was 0.85. The ROC curve was drawn using the differential bacterial genera between MDD patients with anorexia and healthy controls as biomarkers to diagnose MDD patients with anorexia, with its AUC was 0.97. CONCLUSION: This study suggested that MDD patients with anorexia had a distinct gut microbiota compared to healthy individuals, with higher level of CRP. Blautia was more abundant in MDD patients with anorexia and positively correlated with CRP, HAMD scores, and anorexia. The gut microbiota might have influenced MDD and anorexia through the inflammatory factor CRP.


Asunto(s)
Anorexia , Proteína C-Reactiva , Trastorno Depresivo Mayor , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/microbiología , Femenino , Adulto , Masculino , Proteína C-Reactiva/análisis , Proteína C-Reactiva/metabolismo , Anorexia/microbiología , Anorexia/sangre , Inflamación/sangre , Persona de Mediana Edad , Estudios de Casos y Controles , ARN Ribosómico 16S/genética , Adulto Joven
17.
Ecotoxicol Environ Saf ; 270: 115778, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38147774

RESUMEN

BACKGROUND: Studies have shown that fine particulate matter (PM2.5) remains a significant problem in developing countries and plays a critical role in the onset and progression of respiratory illnesses. Circular RNAs (circRNAs) are involved in many pathophysiological processes,but their relationship to PM2.5 pollution is largely unexplored. OBJECTIVES: To elucidate the functional role of hsa_circ_0000992 in PM2.5-induced inflammation in a human bronchial epithelial cell line (16HBE) and to clarify whether the competing endogenous RNA (ceRNA) mechanism is involved in the interrelationships between hsa_circ_0000992 and hsa-miR-936 and the inflammatory signaling pathways. METHODS: Detection of inflammatory factors in 16HBE cells exposed to PM2.5 by RT-qPCR and ELISA.High throughput sequencing and bioinformatics analysis methods were used to screen circRNA.The bioinformatics analysis method western blotting and dual-luciferase reporter gene system were used to verify mechanisms associated with circRNA. RESULTS: PM2.5 cause inflammation in the 16HBE cells. High throughput sequencing and RT-qPCR result revealed that the expression of hsa_circ_0000992 was markedly up-regulated in 16HBE exposed to PM2.5. The binding sites between hsa_circ_0000992 and hsa-miR-936 was confirmed by dual-luciferase reporter gene system.Western blotting and RT-qPCR showed that hsa_circ_0000992 can interact with hsa-miR-936 to regulate AKT serine/threonine kinase 3(AKT3),thereby activating the PI3K/AKT pathway and ultimately promoting the expression of interleukin (IL)- 1ß and IL-8. CONCLUSION: PM2.5 can induce the inflammatory response in 16HBE cells by activating the PI3K/AKT pathway. The expression of hsa_circ_0000992 increased when PM2.5 stimulated 16HBE cells,and the circRNA could then regulate the inflammatory response.Hsa_circ_0000992 regulates the hsa-miR-936/AKT3 axis through the ceRNA mechanism,thereby activating the PI3K/AKT signaling pathway,increasing the expression of cellular inflammatory factors,and promoting PM2.5-induced respiratory inflammation.


Asunto(s)
MicroARNs , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Células Epiteliales/metabolismo , Material Particulado/toxicidad , Inflamación/inducido químicamente , Inflamación/genética , Luciferasas
18.
Artículo en Inglés | MEDLINE | ID: mdl-39230609

RESUMEN

OBJECTIVE: We explored the use of ultrasonography in determining the minimal transverse diameter of the subglottic airway (MTDSA) for the purpose of choosing an appropriate model of reinforced cuffed endotracheal tube. METHODS: A total of 110 pediatric patients who received general anesthesia and tracheal intubation for selective surgeries at the hospital from February 2019 to February 2022 were chosen. They were then randomly assigned to three groups: 39 in the MTDSA group, 35 in the age formula group, and 36 in the height formula group. We assessed how accurately the appropriate endotracheal tube model was predicted in each group and compared their predictive performance. RESULTS: The age range of the enrolled pediatric patients was 3-6 years old. The ultrasonic measurement method demonstrated a prediction accuracy of 87.18%, while the age formula method and height formula method exhibited lower accuracy rates of 54.29% and 47.22%, respectively. Notably, the ultrasonic measurement method outperformed the other two methods significantly (P < 0.05). In the MTDSA group, 2 patients had their catheters changed during anesthesia, and the proportion of patients who changed their catheters was 5.13%. In the MTDSA group, 6 catheters were replaced, and the frequency of catheter replacement was 15.38%. In contrast, these percentages were much higher in the age formula group, at 31.43% and 45.71%, and in the height formula group, at 36.11% and 52.78%. The latter two groups had significantly higher values than the MTDSA group (P < 0.05). Regarding complications such as hoarseness, laryngeal edema, aspiration, and laryngospasm, the MTDSA group experienced a notably lower total incidence of 7.69% compared to the 37.14% in the age formula group and 41.67% in the height formula group, demonstrating statistical significance (P < 0.05). CONCLUSION: The ultrasonic measurement technique employed in MTDSA exhibits impressive precision when it comes to forecasting the specific model of a reinforced cuffed endotracheal tube for pediatric patients. This enhanced accuracy contributes significantly to minimizing the need for tube replacements during anesthesia and the associated complications. It holds immense importance in assisting clinicians in selecting the most appropriate pediatric endotracheal tube model for anesthesia induction.

19.
J Asian Nat Prod Res ; : 1-16, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975979

RESUMEN

Three chromomycin derivatives, chromomycins A3 (1, CA3), A5 (2, CA5), and monodeacetylchromomycin A3 (3, MDA-CA3), were identified from the soil-derived Streptomyces sp. CGMCC 26516. A reinvestigation of the structure of CA5 is reported, of which the absolute configuration was unambiguously determined for the first time to be identical with that of CA3 based on nuclear magnetic resonance (NMR) data analysis as well as NMR and electronic circular dichroism calculations. Compounds 1-3 showed potent cytotoxicity against the non-small-cell lung cancer (NSCLC) cells (A549, H460, H157-c-FLIP, and H157-LacZ) and down-regulated the protein expression of c-FLIP in A549 cells. The IC50 values of chromomycins in H157-c-FLIP were higher than that in H157-LacZ. Furthermore, si-c-FLIP promoted anti-proliferation effect of chromomycins in NSCLC cells. In nude mice xenograft model, 1 and 2 both showed more potent inhibition on the growth of H157-lacZ xenografts than that of H157-c-FLIP xenografts. These results verify that c-FLIP mediates the anticancer effects of chromomycins in NSCLC.

20.
J Microencapsul ; 41(6): 419-433, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38989705

RESUMEN

AIM: To construct a novel nano-carrier with dual ligands to achieve superior anti-tumour efficacy and lower toxic side effects. METHODS: Liposomes were prepared by thin film hydration method. Ultraviolet, high performance liquid chromatography, nano-size analyser, ultrafiltration centrifugation, dialysis, transmission electron microscope, flow cytometry, Cell Counting Kit-8, confocal laser scanning microscopy, transwell, and tumorsphere assay were used to study the characterisations, cytotoxicity, and in vitro targeting of dg-Bcan targeting peptide (BTP-7)/pHA-temozolomide (TMZ)/tetra(4-carboxyphenyl)porphyrin (TCPP)-Lip. RESULTS: BTP-7/pHA-TMZ/TCPP-Lip was a spheroid with a mean diameters of 143 ± 3.214 nm, a polydispersity index of 0.203 ± 0.025 and a surface charge of -22.8 ± 0.425 mV. The drug loadings (TMZ and TCPP) are 7.40 ± 0.23% and 2.05 ± 0.03% (mg/mg); and the encapsulation efficiencies are 81.43 ± 0.51% and 84.28 ± 1.64% (mg/mg). The results showed that BTP-7/pHA-TMZ/TCPP-Lip presented enhanced targeting and cytotoxicity. CONCLUSION: BTP-7/pHA-TMZ/TCPP-Lip can specifically target the tumour cells to achieve efficient drug delivery, and improve the anti-tumour efficacy and reduces the systemic toxicity.


Asunto(s)
Glioblastoma , Liposomas , Temozolomida , Glioblastoma/tratamiento farmacológico , Humanos , Línea Celular Tumoral , Temozolomida/farmacología , Temozolomida/administración & dosificación , Temozolomida/farmacocinética , Temozolomida/química , Porfirinas/química , Porfirinas/administración & dosificación , Porfirinas/farmacología , Sistemas de Liberación de Medicamentos , Neoplasias Encefálicas/tratamiento farmacológico , Péptidos/química , Péptidos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA