RESUMEN
The evolutionary processes that underlie the marked sensitivity of small cell lung cancer (SCLC) to chemotherapy and rapid relapse are unknown1-3. Here we determined tumour phylogenies at diagnosis and throughout chemotherapy and immunotherapy by multiregion sequencing of 160 tumours from 65 patients. Treatment-naive SCLC exhibited clonal homogeneity at distinct tumour sites, whereas first-line platinum-based chemotherapy led to a burst in genomic intratumour heterogeneity and spatial clonal diversity. We observed branched evolution and a shift to ancestral clones underlying tumour relapse. Effective radio- or immunotherapy induced a re-expansion of founder clones with acquired genomic damage from first-line chemotherapy. Whereas TP53 and RB1 alterations were exclusively part of the common ancestor, MYC family amplifications were frequently not constituents of the founder clone. At relapse, emerging subclonal mutations affected key genes associated with SCLC biology, and tumours harbouring clonal CREBBP/EP300 alterations underwent genome duplications. Gene-damaging TP53 alterations and co-alterations of TP53 missense mutations with TP73, CREBBP/EP300 or FMN2 were significantly associated with shorter disease relapse following chemotherapy. In summary, we uncover key processes of the genomic evolution of SCLC under therapy, identify the common ancestor as the source of clonal diversity at relapse and show central genomic patterns associated with sensitivity and resistance to chemotherapy.
Asunto(s)
Evolución Molecular , Inmunoterapia , Neoplasias Pulmonares , Platino (Metal) , Carcinoma Pulmonar de Células Pequeñas , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Células Clonales/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Genes myc/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/terapia , Mutación , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Platino (Metal)/farmacología , Platino (Metal)/uso terapéutico , Recurrencia , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/inmunología , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/terapiaRESUMEN
Non-small cell lung cancer (NSCLC) paradigmatically shows the potential of personalized and therefore precise cancer treatment. For around one third of the patients, predominantly suffering from adenocarcinoma, targetable driver mutations could be characterized in the meantime. Targeted therapies, mostly with kinase inhibitors, achieve impressive advances in the prolongation of overall survival often over many years and excellent quality of life in patients with advanced NSCLC. Targeted treatment is also increasingly evaluated as adjuvant or neoadjuvant treatment in early inoperable stages of NSCLC. An absolute prerequisite for the use of personalized treatment is upfront broad molecular diagnostics before the decision on first line treatment. The limitations of personalized treatment are the so far unavoidable development of resistance mutations and increasing clonal heterogeneity during the course of the treatment. Approaches to further improve treatment results comprise the development of next-generation inhibitors, the combination of targeted substances, also with chemotherapy and the use of new immunoconjugates.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Calidad de Vida , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores ErbB , Terapia Molecular DirigidaRESUMEN
The pentavalent arsenic compound roxarsone (RSN) is used as a feed additive in poultry for rapid growth, eventually ending up in poultry litter. Poultry litter contains chicken manure, which plays a vital role as an affordable fertilizer by providing rich nutrients to agricultural land. Consequently, the extensive use of poultry droppings serves as a conduit for the spread of toxic forms of arsenic in the soil and surface water. RSN can be easily oxidized to release highly carcinogenic As(III) and As(IV) species. Thus, investigations were conducted for the sensitive detection of RSN electrochemically by developing a sensor material based on lanthanum manganese oxide (LMO) and functionalized carbon nanofibers (f-CNFs). The successfully synthesised LMO/f-CNF composite was confirmed by chemical, compositional, and morphological studies. The electrochemical activity of the prepared composite material was examined using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The obtained results confirmed that LMO/f-CNF showed enhanced electrocatalytic activity and improved current response with a good linear range (0.01-0.78 µM and 2.08-497 µM, respectively), exhibiting a low limit of detection (LOD) of 0.004 µM with a high sensitivity of 13.24 µA µM-1 cm-2 towards the detection of RSN. The noteworthy features of LMO/f-CNF composite with its superior electrochemical performance enabled reliable reproducibility, exceptional stability and reliable practical application in the analysis of tap water and food sample, affording a recovery range of 86.1-98.87%.
Asunto(s)
Compuestos de Calcio , Técnicas Electroquímicas , Lantano , Nanofibras , Óxidos , Roxarsona , Titanio , Nanofibras/química , Lantano/química , Óxidos/química , Técnicas Electroquímicas/métodos , Roxarsona/química , Roxarsona/análisis , Titanio/química , Compuestos de Calcio/química , Contaminantes Químicos del Agua/análisis , Carbono/química , Límite de Detección , Análisis de los Alimentos/métodos , Contaminación de Alimentos/análisis , Animales , Compuestos de Manganeso/químicaRESUMEN
INTRODUCTION: MET fusions have been described only rarely in NSCLC. Thus, data on patient characteristics and treatment response are limited. We here report histopathologic data, patient demographics, and treatment outcome including response to MET tyrosine kinase inhibitor (TKI) therapy in MET fusion-positive NSCLC. METHODS: Patients with NSCLC and MET fusions were identified mostly by RNA sequencing within the routine molecular screening program of the national Network Genomic Medicine, Germany. RESULTS: We describe a cohort of nine patients harboring MET fusions. Among these nine patients, two patients had been reported earlier. The overall frequency was 0.29% (95% confidence interval: 0.15-0.55). The tumors were exclusively adenocarcinoma. The cohort was heterogeneous in terms of age, sex, or smoking status. We saw five different fusion partner genes (KIF5B, TRIM4, ST7, PRKAR2B, and CAPZA2) and several different breakpoints. Four patients were treated with a MET TKI leading to two partial responses, one stable disease, and one progressive disease. One patient had a BRAF V600E mutation as acquired resistance mechanism. CONCLUSIONS: MET fusions are very rare oncogenic driver events in NSCLC and predominantly seem in adenocarcinomas. They are heterogeneous in terms of fusion partners and breakpoints. Patients with MET fusion can benefit from MET TKI therapy.
Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Adenocarcinoma/patología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Resultado del TratamientoRESUMEN
BACKGROUND: ROS1 fusions are well treatable aberrations in NSCLC. Besides solvent-front mutations (SFM) in resistance to targeted therapy, small-scale ROS1 mutations are largely unknown. We exploratively analyzed the clinical and molecular characteristics of small-scale ROS1 mutations in NSCLC patients without activating ROS1 fusions or SFMs. METHODS: Next-generation sequencing was performed on tissue samples from NSCLC patients within the Network Genomic Medicine. Patients with ROS1 fusions and SFMs were excluded. We analyzed clinical characteristics of patients harboring small-scale ROS1-mutations, ROS1- and co-occurring mutations, and their response to systemic therapy. RESULTS: Of 10,396 patients analyzed, 101 (1.0%) patients harbored small-scale ROS1 mutations. Most patients were male (73.3%) and smokers (96.6%). Nearly half of the patients presented with squamous-cell carcinoma (SqCC, 40.4%). Most mutations were transversions (50.5%), and 66% were in the kinase domain. Besides TP53 mutations (65.3%), KRAS (22.8%), EGFR (5.9%), PIK3CA (9.9%) and FGFR1-4 mutations (8.9%) co-occurred. In 10 (9.9%) patients, ROS1 mutation was the only aberration detected. Median overall survival (mOS) differed significantly in patients with or without KRAS co-mutations (9.7 vs 21.5 months, p = 0.02) and in patients treated with or without immune-checkpoint blockade (ICB) during treatment (21.5 vs 4.4 months, p = 0.003). CONCLUSION: The cohort's clinical characteristics contrasted ROS1-fused cohorts. Co-occurrence of KRAS mutations led to shortened survival and patients benefited from ICB. Our data does not support the idea of ROS1 small-scale mutations as strong oncogenic drivers in NSCLC, but rather as relevant bystanders altering the efficacy of treatment approaches.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Masculino , Femenino , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteínas Tirosina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas/genética , MutaciónRESUMEN
Background: Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the loss of motor neurons in cerebral cortex, brainstem and spinal cord. Numerous studies have demonstrated signs of oxidative stress in postmortem neuronal tissue, cerebrospinal fluid, plasma and urine of ALS patients, without focusing on the specific processes within motor neurons. Thus, we aimed to investigate the relevance of reactive oxygen species (ROS) detoxification mechanisms and its consequences on the formation of toxic/lethal DNA double strand breaks (DSBs) in the ALS model of the Wobbler mouse. Methods: Live cell imaging in dissociated motor neuronal cultures was used to investigate the production of ROS using Dihydroethidium (DHE). The expression levels of ROS detoxifying molecules were investigated by qPCR as well as Western blots. Furthermore, the expression levels of DNA damage response proteins p53bp1 and H2ax were investigated using qPCR and immunofluorescence staining. Proof-of-principle experiments using ROS scavengers were performed in vitro to decipher the influence of ROS on the formation of DNA double strand breaks quantifying the γH2ax spots formation. Results: Here, we verified an elevated ROS-level in spinal motor neurons of symptomatic Wobbler mice in vitro. As a result, an increased number of DNA damage response proteins p53bp1 and γH2ax in dissociated motor neurons of the spinal cord of Wobbler mice was observed. Furthermore, we found a significantly altered expression of several antioxidant molecules in the spinal cord of Wobbler mice, suggesting a deficit in ROS detoxification mechanisms. This hypothesis could be verified by using ROS scavenger molecules in vitro to reduce the number of γH2ax foci in dissociated motor neurons and thus counteract the harmful effects of ROS. Conclusion: Our data indicate that maintenance of redox homeostasis may play a key role in the therapy of the neurodegenerative disease ALS. Our results underline a necessity for multimodal treatment approaches to prolong the average lifespan of motor neurons and thus slow down the progression of the disease, since a focused intervention in one pathomechanism seems to be insufficient in ALS therapy.
RESUMEN
Amyotrophic lateral sclerosis is a devastating motor neuron disease and to this day not curable. While 5-10% of patients inherit the disease (familiar ALS), up to 95% of patients are diagnosed with the sporadic form (sALS). ALS is characterized by the degeneration of upper motor neurons in the cerebral cortex and of lower motor neurons in the brainstem and spinal cord. The wobbler mouse resembles almost all phenotypical hallmarks of human sALS patients and is therefore an excellent motor neuron disease model. The motor neuron disease of the wobbler mouse develops over a time course of around 40 days and can be divided into three phases: p0, presymptomatic; p20, early clinical; and p40, stable clinical phase. Recent findings suggest an essential implication of the NAD+-producing enzyme Nmnat2 in neurodegeneration as well as maintenance of healthy axons. Here, we were able to show a significant downregulation of both gene and protein expression of Nmnat2 in the spinal cord of the wobbler mice at the stable clinical phase. The product of the enzyme NAD+ is also significantly reduced, and the values of the reactive oxygen species are significantly increased in the spinal cord of the wobbler mouse at p40. Thus, the deregulated expression of Nmnat2 appears to have a great influence on the cellular stress in the spinal cord of wobbler mice.