RESUMEN
In this high-throughput proteomic study of autosomal dominant Alzheimer's disease (ADAD), we sought to identify early biomarkers in cerebrospinal fluid (CSF) for disease monitoring and treatment strategies. We examined CSF proteins in 286 mutation carriers (MCs) and 177 non-carriers (NCs). The developed multi-layer regression model distinguished proteins with different pseudo-trajectories between these groups. We validated our findings with independent ADAD as well as sporadic AD datasets and employed machine learning to develop and validate predictive models. Our study identified 137 proteins with distinct trajectories between MCs and NCs, including eight that changed before traditional AD biomarkers. These proteins are grouped into three stages: early stage (stress response, glutamate metabolism, neuron mitochondrial damage), middle stage (neuronal death, apoptosis), and late presymptomatic stage (microglial changes, cell communication). The predictive model revealed a six-protein subset that more effectively differentiated MCs from NCs, compared with conventional biomarkers.
RESUMEN
Though much is known about the cellular and molecular components of the circadian clock, output pathways that couple clock cells to overt behaviors have not been identified. We conducted a screen for circadian-relevant neurons in the Drosophila brain and report here that cells of the pars intercerebralis (PI), a functional homolog of the mammalian hypothalamus, comprise an important component of the circadian output pathway for rest:activity rhythms. GFP reconstitution across synaptic partners (GRASP) analysis demonstrates that PI cells are connected to the clock through a polysynaptic circuit extending from pacemaker cells to PI neurons. Molecular profiling of relevant PI cells identified the corticotropin-releasing factor (CRF) homolog, DH44, as a circadian output molecule that is specifically expressed by PI neurons and is required for normal rest:activity rhythms. Notably, selective activation or ablation of just six DH44+ PI cells causes arrhythmicity. These findings delineate a circuit through which clock cells can modulate locomotor rhythms.
Asunto(s)
Relojes Circadianos , Drosophila/fisiología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Encéfalo/citología , Encéfalo/fisiología , Ritmo Circadiano , Drosophila/citología , Neuronas/citología , Análisis de la Célula Individual , TranscriptomaRESUMEN
OBJECTIVE: Alzheimer's disease (AD) is believed to be more common in African Americans (AA), but biomarker studies in AA populations are limited. This report represents the largest study to date examining cerebrospinal fluid AD biomarkers in AA individuals. METHODS: We analyzed 3,006 cerebrospinal fluid samples from controls, AD cases, and non-AD cases, including 495 (16.5%) self-identified black/AA and 2,456 (81.7%) white/European individuals using cutoffs derived from the Alzheimer's Disease Neuroimaging Initiative, and using a data-driven multivariate Gaussian mixture of regressions. RESULTS: Distinct effects of race were found in different groups. Total Tauand phospho181-Tau were lower among AA individuals in all groups (p < 0.0001), and Aß42 was markedly lower in AA controls compared with white controls (p < 0.0001). Gaussian mixture of regressions modeling of cerebrospinal fluid distributions incorporating adjustments for covariates revealed coefficient estimates for AA race comparable with 2-decade change in age. Using Alzheimer's Disease Neuroimaging Initiative cutoffs, fewer AA controls were classified as biomarker-positive asymptomatic AD (8.0% vs 13.4%). After adjusting for covariates, our Gaussian mixture of regressions model reduced this difference, but continued to predict lower prevalence of asymptomatic AD among AA controls (9.3% vs 13.5%). INTERPRETATION: Although the risk of dementia is higher, data-driven modeling indicates lower frequency of asymptomatic AD in AA controls, suggesting that dementia among AA populations may not be driven by higher rates of AD. ANN NEUROL 2024;96:463-475.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Biomarcadores , Negro o Afroamericano , Proteínas tau , Humanos , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/diagnóstico , Masculino , Femenino , Anciano , Prevalencia , Persona de Mediana Edad , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Anciano de 80 o más Años , Población Blanca , Fragmentos de Péptidos/líquido cefalorraquídeo , Enfermedades AsintomáticasRESUMEN
INTRODUCTION: Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS: We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS: Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION: These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.
Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Proteómica , Humanos , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Masculino , Anciano , Femenino , Encéfalo/metabolismo , Tauopatías/líquido cefalorraquídeo , Tauopatías/sangre , Parálisis Supranuclear Progresiva/líquido cefalorraquídeo , Parálisis Supranuclear Progresiva/sangre , Angiopatía Amiloide Cerebral/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/genética , Persona de Mediana Edad , Anciano de 80 o más Años , Proteínas tau/líquido cefalorraquídeoRESUMEN
Cognitive impairment in the elderly features complex molecular pathophysiology extending beyond the hallmark pathologies of traditional disease classification. Molecular subtyping using large-scale -omic strategies can help resolve this biological heterogeneity. Using quantitative mass spectrometry, we measured â¼8000 proteins across >600 dorsolateral prefrontal cortex tissues with clinical diagnoses of no cognitive impairment (NCI), mild cognitive impairment (MCI), and Alzheimer's disease (AD) dementia. Unbiased classification of MCI and AD cases based on individual proteomic profiles resolved three classes with expression differences across numerous cell types and biological ontologies. Two classes displayed molecular signatures atypical of AD neurodegeneration, such as elevated synaptic and decreased inflammatory markers. In one class, these atypical proteomic features were associated with clinical and pathological hallmarks of cognitive resilience. We were able to replicate these classes and their clinicopathological phenotypes across two additional tissue cohorts. These results promise to better define the molecular heterogeneity of cognitive impairment and meaningfully impact its diagnostic and therapeutic precision.
Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Humanos , Proteoma , Proteómica , EncéfaloRESUMEN
Negative correlations in the sequential evolution of interspike intervals (ISIs) are a signature of memory in neuronal spike-trains. They provide coding benefits including firing-rate stabilization, improved detectability of weak sensory signals, and enhanced transmission of information by improving signal-to-noise ratio. Primary electrosensory afferent spike-trains in weakly electric fish fall into two categories based on the pattern of ISI correlations: non-bursting units have negative correlations which remain negative but decay to zero with increasing lags (Type I ISI correlations), and bursting units have oscillatory (alternating sign) correlation which damp to zero with increasing lags (Type II ISI correlations). Here, we predict and match observed ISI correlations in these afferents using a stochastic dynamic threshold model. We determine the ISI correlation function as a function of an arbitrary discrete noise correlation function [Formula: see text], where k is a multiple of the mean ISI. The function permits forward and inverse calculations of the correlation function. Both types of correlation functions can be generated by adding colored noise to the spike threshold with Type I correlations generated with slow noise and Type II correlations generated with fast noise. A first-order autoregressive (AR) process with a single parameter is sufficient to predict and accurately match both types of afferent ISI correlation functions, with the type being determined by the sign of the AR parameter. The predicted and experimentally observed correlations are in geometric progression. The theory predicts that the limiting sum of ISI correlations is [Formula: see text] yielding a perfect DC-block in the power spectrum of the spike train. Observed ISI correlations from afferents have a limiting sum that is slightly larger at [Formula: see text] ([Formula: see text]). We conclude that the underlying process for generating ISIs may be a simple combination of low-order AR and moving average processes and discuss the results from the perspective of optimal coding.
Asunto(s)
Pez Eléctrico , Animales , Potenciales de Acción/fisiología , Pez Eléctrico/fisiología , Neuronas/fisiología , Ruido , Modelos NeurológicosRESUMEN
In insects, adipokinetic hormone is the primary hormone responsible for the mobilization of stored energy. While a growing body of evidence has solidified the role of adipokinetic hormone (AKH) in modulating the physiological and behavioral responses to metabolic stress, little is known about the upstream endocrine circuit that directly regulates AKH release. We evaluated the AKH-producing cell (APC) transcriptome to identify potential regulatory elements controlling APC activity and found that a number of receptors showed consistent expression levels, including all known dopamine receptors and the pigment dispersing factor receptor (PDFR). We tested the consequences of targeted genetic knockdown and found that APC limited expression of RNAi elements corresponding to each dopamine receptor and caused a significant reduction in survival under starvation. In contrast, PDFR knockdown significantly extended lifespan under starvation, whereas expression of a tethered PDF in APCs resulted in significantly shorter lifespans. These manipulations caused various changes in locomotor activity under starvation. We used live-cell imaging to evaluate the acute effects of the ligands for these receptors on APC activation. Dopamine application led to a transient increase in intracellular calcium in a trehalose-dependent manner. Furthermore, coapplication of dopamine and ecdysone led to a complete loss of this response, suggesting that these two hormones act antagonistically. We also found that PDF application led to an increase in cAMP in APCs and that this response was dependent on expression of the PDFR in APCs. Together, these results suggest a complex circuit in which multiple hormones act on APCs to modulate metabolic state.
Asunto(s)
Hormonas de Insectos , Inanición , Animales , Dopamina/metabolismo , Drosophila melanogaster/genética , Hormonas de Insectos/genética , Hormonas de Insectos/metabolismo , Ácido Pirrolidona Carboxílico/metabolismo , Transducción de Señal , Inanición/metabolismoRESUMEN
All organisms confront the challenges of maintaining metabolic homeostasis in light of both variabilities in nutrient supplies and energetic costs of different physiologies and behaviors. While all cells are nutrient sensitive, only relative few cells within Metazoans are nutrient sensing cells. Nutrient sensing cells organize systemic behavioral and physiological responses to changing metabolic states. One group of cells present in the arthropods, is the adipokinetic hormone producing cells (APCs). APCs possess intrinsic nutrient sensors and receive contextual information regarding metabolic state through other endocrine connections. APCs express receptors for different hormones which modulate APC physiology and the secretion of the adipokinetic hormone (AKH). APCs are functionally similar to alpha cells in the mammalian pancreas and display a similar physiological organization. AKH release results in both hypertrehalosemia and hyperlipidemia through high affinity binding to the AKH receptor (AKHR). Another hallmark of AKH signaling is heightened locomotor activity, which accompanies starvation and is thought to enhance foraging. In this review, we discuss mechanisms of nutrient sensing and modulation of AKH release. Additionally, we compare the organization of AKH/AKHR signaling in different taxa. Lastly, we consider the signals that APCs integrate as well as recent experimental results that have expanded the functional repertoire of AKH signaling, further establishing this as both a metabolic and stress hormone.
Asunto(s)
Homeostasis , Hormonas de Insectos/metabolismo , Nutrientes/análisis , Nutrientes/metabolismo , Oligopéptidos/metabolismo , Ácido Pirrolidona Carboxílico/análogos & derivados , Estrés Fisiológico , Animales , Humanos , Ácido Pirrolidona Carboxílico/metabolismo , Transducción de SeñalRESUMEN
While many instances of GPCR dimerization have been reported for vertebrate receptors, invertebrate GPCR dimerization remains poorly investigated, with few invertebrate GPCRs having been shown to assemble as dimers. To date, no Drosophila GPCRs have been shown to assemble as dimers. To explore the evolutionary conservation of GPCR dimerization, we employed an acceptor-photobleaching FRET methodology to evaluate whether multiple subclasses of Drosophila GPCRs assembled as homodimers when heterologously expressed in HEK-293 T cells. We C-terminally tagged multiple Drosophila neuropeptide GPCRs that exhibited structural homology with a vertebrate GPCR family member previously shown to assemble as a dimer with CFP and YFP fluorophores and visualized these receptors through confocal microscopy. FRET responses were determined based on the increase in CFP emission intensity following YFP photobleaching for each receptor pair tested. A significant FRET response was observed for each receptor expressed as a homodimer pair, while non-significant FRET responses were displayed by both cytosolic CFP and YFP expressed alone, and a heterodimeric pair of receptors from unrelated families. These findings suggest that receptors exhibiting positive FRET responses assemble as homodimers at the plasma membrane and are the first to suggest that Drosophila GPCRs assemble as homodimeric complexes. We propose that GPCR dimerization arose early in metazoan evolution and likely plays an important and underappreciated role in the cellular signaling of all animals.
Asunto(s)
Proteínas de Drosophila/química , Receptores Acoplados a Proteínas G/química , Receptores de Neuropéptido/química , Animales , Membrana Celular/metabolismo , Dimerización , Proteínas de Drosophila/clasificación , Proteínas de Drosophila/genética , Evolución Molecular , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neuropéptidos/metabolismo , Fotoblanqueo , Receptores Acoplados a Proteínas G/clasificación , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropéptido/clasificación , Receptores de Neuropéptido/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismoRESUMEN
INTRODUCTION: Alzheimer's disease (AD) is the most common cause of dementia, characterized by progressive cognitive decline. Protein biomarkers of AD brain pathology, including ß-amyloid and Tau, are reflected in cerebrospinal fluid (CSF), yet the identification of additional biomarkers linked to other brain pathophysiologies remains elusive. We recently reported a multiplex tandem-mass tag (TMT) CSF proteomic analysis of nearly 3000 proteins, following depletion of highly abundant proteins and off-line fractionation, across control and AD cases. Of these, over 500 proteins were significantly increased or decreased in AD, including markers reflecting diverse biological functions in brain. Here, we use a targeted mass spectrometry (MS) approach, termed parallel reaction monitoring (PRM), to quantify select CSF biomarkers without pre-depletion or fractionation to assess the reproducibility of our findings and the specificity of changes for AD versus other causes of cognitive impairment. METHOD: We nominated 41 proteins (94 peptides) from the TMT CSF discovery dataset, representing a variety of brain cell-types and biological functions, for label-free PRM analysis in a replication cohort of 88 individuals that included 20 normal controls, 37 clinically diagnosed AD cases and 31 cases with non-AD cognitive impairment. To control for technical variables, isotopically labeled synthetic heavy peptide standards were added into each of the 88 CSF tryptic digests. Furthermore, a peptide pool, representing an equivalent amount of peptide from all samples, was analyzed (n = 10) across each batch. Together, this approach enabled us to assess both the intra- and inter-sample differences in peptide signal response and retention time. RESULTS: Despite differences in sample preparation, quantitative MS approaches and patient samples, 25 proteins, including Tau, had a consistent and significant change in AD in both the discovery and replication cohorts. Validated CSF markers with low coefficient of variation included the protein products for neuronal/synaptic (GDA, GAP43, SYN1, BASP1, YWHAB, YWHAZ, UCHL1, STMN1 and MAP1B), glial/inflammation (SMOC1, ITGAM, CHI3L1, SPP1, and CHIT1) and metabolic (PKM, ALDOA and FABP3) related genes. Logistical regression analyses revealed several proteins with high sensitivity and specificity for classifying AD cases from controls and other non-AD dementias. SMOC1, YWHAZ, ALDOA and MAP1B emerged as biomarker candidates that could best discriminate between individuals with AD and non-AD cognitive impairment as well as Tau/ß-amyloid ratio. Notably, SMOC1 levels in postmortem brain are highly correlated with AD pathology even in the preclinical stage of disease, indicating that CSF SMOC1 levels reflect underlying brain pathology specific for AD. CONCLUSION: Collectively these findings highlight the utility of targeted MS approaches to quantify biomarkers associated with AD that could be used for monitoring disease progression, stratifying patients for clinical trials and measuring therapeutic response.
RESUMEN
Here, we report a method for the generation of complementary tryptic (CompTryp) isotope-labeled peptide standards for the relative and absolute quantification of proteins by mass spectrometry (MS). These standards can be digested in parallel with either trypsin (Tryp-C) or trypsin-N (Tryp-N), to generate peptides that significantly overlap in primary sequence having C- and N-terminal arginine and lysine residues, respectively. As a proof of concept, an isotope-labeled CompTryp standard was synthesized for Tau, a well-established biomarker in Alzheimer's disease (AD), which included both N- and C-terminal heavy isotope-labeled (15N and 13C) arginine residues and flanking amino acid sequences to monitor proteolytic digestion. Despite having the exact same mass, the N- and C-terminal heavy Tau peptides are distinguishable by retention time and MS/MS fragmentation profiles. The isotope-labeled Tau CompTryp standard was added to human cerebrospinal fluid (CSF) followed by parallel digestion with Tryp-N and Tryp-C. The native and isotope-labeled peptide pairs were quantified by parallel reaction monitoring (PRM) in a single assay. Notably, both tryptic peptides were effective at quantifying Tau in human CSF, and both showed a significant difference in CSF Tau levels between AD and controls. Treating these CompTryp Tau peptide measurements as independent replicates also improved the coefficient of variation and correlation with Tau immunoassays. More broadly, we propose that CompTryp standards can be generated for any protein of interest, providing an efficient method to improve the robustness and reproducibility for MS analysis of clinical and research samples.
Asunto(s)
Enfermedad de Alzheimer/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Fragmentos de Péptidos/aislamiento & purificación , Proteínas tau/líquido cefalorraquídeo , Anciano , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/genética , Cromatografía Liquida/métodos , Femenino , Humanos , Inmunoensayo/métodos , Marcaje Isotópico , Masculino , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Espectrometría de Masas en Tándem/métodos , Tripsina/farmacología , Proteínas tau/química , Proteínas tau/genéticaRESUMEN
G protein-coupled receptors are the largest superfamily of cell surface receptors in the Metazoa and play critical roles in transducing extracellular signals into intracellular responses. This action is mediated through conformational changes in the receptor following ligand binding. A number of conserved motifs have critical roles in GPCR function, and here we focus on a highly conserved motif (WxFG) in extracellular loop one (EL1). A phylogenetic analysis documents the presence of the WxFG motif in â¼90% of Class A GPCRs and the motif is represented in 17 of the 19 Class A GPCR subfamilies. Using site-directed mutagenesis, we mutagenized the conserved tryptophan residue in eight receptors which are members of disparate class A GPCR subfamilies from different taxa. The modification of the Drosophila leucokinin receptor shows that substitution of any non-aromatic amino acid for the tryptophan leads to a loss of receptor function. Additionally, leucine substitutions at this position caused similar signaling defects in the follicle-stimulating hormone receptor (FSHR), Galanin receptor (GALR1), AKH receptor (AKHR), corazonin receptor (CRZR), and muscarinic acetylcholine receptor (mACHR1). Visualization of modified receptors through the incorporation of a fluorescent tag revealed a severe reduction in plasma membrane expression, indicating aberrant trafficking of these modified receptors. Taken together, these results suggest a novel role for the WxFG motif in GPCR trafficking and receptor function.
Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Animales , Caenorhabditis elegans , Pollos , Ciona intestinalis , Clonación Molecular , Drosophila melanogaster , Humanos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/genética , Xenopus laevis , Pez CebraRESUMEN
Insect growth is punctuated by molts, during which the animal produces a new exoskeleton. The molt culminates in ecdysis, an ordered sequence of behaviors that causes the old cuticle to be shed. This sequence is activated by Ecdysis triggering hormone (ETH), which acts on the CNS to activate neurons that produce neuropeptides implicated in ecdysis, including Eclosion hormone (EH), Crustacean cardioactive peptide (CCAP) and Bursicon. Despite more than 40â years of research on ecdysis, our understanding of the precise roles of these neurohormones remains rudimentary. Of particular interest is EH; although it is known to upregulate ETH release, other roles for EH have remained elusive. We isolated an Eh null mutant in Drosophila and used it to investigate the role of EH in larval ecdysis. We found that null mutant animals invariably died at around the time of ecdysis, revealing an essential role in its control. Further analyses showed that these animals failed to express the preparatory behavior of pre-ecdysis while directly expressing the motor program of ecdysis. Although ETH release could not be detected, the lack of pre-ecdysis could not be rescued by injections of ETH, suggesting that EH is required within the CNS for ETH to trigger the normal ecdysial sequence. Using a genetically encoded calcium probe, we showed that EH configured the response of the CNS to ETH. These findings show that EH plays an essential role in the Drosophila CNS in the control of ecdysis, in addition to its known role in the periphery of triggering ETH release.
Asunto(s)
Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/genética , Hormonas de Insectos/genética , Muda , Alelos , Animales , Conducta Animal , Hemicigoto , Inyecciones , Hormonas de Insectos/metabolismo , Larva/crecimiento & desarrollo , Mutación/genética , Neuronas/metabolismo , Neuropéptidos/metabolismoRESUMEN
Sensory neurons code information about stimuli in their sequence of action potentials (spikes). Intuitively, the spikes should represent stimuli with high fidelity. However, generating and propagating spikes is a metabolically expensive process. It is therefore likely that neural codes have been selected to balance energy expenditure against encoding error. Our recently proposed optimal, energy-constrained neural coder (Jones et al. Frontiers in Computational Neuroscience, 9, 61 2015) postulates that neurons time spikes to minimize the trade-off between stimulus reconstruction error and expended energy by adjusting the spike threshold using a simple dynamic threshold. Here, we show that this proposed coding scheme is related to existing coding schemes, such as rate and temporal codes. We derive an instantaneous rate coder and show that the spike-rate depends on the signal and its derivative. In the limit of high spike rates the spike train maximizes fidelity given an energy constraint (average spike-rate), and the predicted interspike intervals are identical to those generated by our existing optimal coding neuron. The instantaneous rate coder is shown to closely match the spike-rates recorded from P-type primary afferents in weakly electric fish. In particular, the coder is a predictor of the peristimulus time histogram (PSTH). When tested against in vitro cortical pyramidal neuron recordings, the instantaneous spike-rate approximates DC step inputs, matching both the average spike-rate and the time-to-first-spike (a simple temporal code). Overall, the instantaneous rate coder relates optimal, energy-constrained encoding to the concepts of rate-coding and temporal-coding, suggesting a possible unifying principle of neural encoding of sensory signals.
Asunto(s)
Potenciales de Acción/fisiología , Metabolismo Energético/fisiología , Modelos Neurológicos , Células Receptoras Sensoriales/fisiología , Animales , Estimulación Eléctrica , Humanos , Factores de TiempoRESUMEN
Current evidence suggests that oligomers of the amyloid-ß (Aß) peptide are involved in the cellular toxicity of Alzheimer's disease, yet their biophysical characterization remains difficult because of lack of experimental control over the aggregation process under relevant physiologic conditions. Here, we show that modification of the Aß peptide backbone at Gly29 allows for the formation of oligomers but inhibits fibril formation at physiologic temperature and pH. Our results suggest that the putative bend region in Aß is important for higher-order aggregate formation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/genética , Amiloide/química , Fragmentos de Péptidos/síntesis química , Secuencia de Aminoácidos , Glicina/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Mutación , Fragmentos de Péptidos/química , TemperaturaRESUMEN
The increasing prevalence of neurodevelopmental disorders has highlighted the need for improved testing methods to determine developmental neurotoxicity (DNT) hazard for thousands of chemicals. This paper proposes the integration of organoid intelligence (OI); leveraging brain organoids to study neuroplasticity in vitro, into the DNT testing paradigm. OI brings a new approach to measure the impacts of xenobiotics on plasticity mechanisms - a critical biological process that is not adequately covered in current DNT in vitro assays. Finally, the integration of artificial intelligence (AI) techniques will further facilitate the analysis of complex brain organoid data to study these plasticity mechanisms.
RESUMEN
Brain Microphysiological Systems including neural organoids derived from human induced pluripotent stem cells offer a unique lens to study the intricate workings of the human brain. This paper investigates the foundational elements of learning and memory in neural organoids, also known as Organoid Intelligence by quantifying immediate early gene expression, synaptic plasticity, neuronal network dynamics, and criticality to demonstrate the utility of these organoids in basic science research. Neural organoids showed synapse formation, glutamatergic and GABAergic receptor expression, immediate early gene expression basally and evoked, functional connectivity, criticality, and synaptic plasticity in response to theta-burst stimulation. In addition, pharmacological interventions on GABAergic and glutamatergic receptors, and input specific theta-burst stimulation further shed light on the capacity of neural organoids to mirror synaptic modulation and short-term potentiation, demonstrating their potential as tools for studying neurophysiological and neurological processes and informing therapeutic strategies for diseases.
RESUMEN
INTRODUCTION: Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to ß-amyloid (Aß) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. METHODS: We employed heparin-affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to enrich HBPs from plasma obtained from AD (n = 62) and control (n = 47) samples. These profiles were then correlated to Aß, tau and phosphorylated tau (pTau) CSF biomarkers and plasma pTau181 from the same individuals, as well as a consensus brain proteome network to assess the overlap with AD brain pathophysiology. RESULTS: Heparin enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundant proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude in abundance, were measured across 109 samples. Compared to the consensus AD brain protein co-expression network, we observed that specific plasma proteins exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes, highlighting the complex interplay between the two compartments. Elevated proteins in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate with Aß deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and the APOE4 proteoform. Additionally, heparin-enriched proteins in plasma demonstrated significant correlations with conventional AD CSF biomarkers, including Aß, total tau, pTau, and plasma pTau181. A panel of five plasma proteins classified AD from control individuals with an area under the curve (AUC) of 0.85. When combined with plasma pTau181, the panel significantly improved the classification performance of pTau181 alone, increasing the AUC from 0.93 to 0.98. This suggests that the heparin-enriched plasma proteome captures additional variance in cognitive dementia beyond what is explained by pTau181. CONCLUSION: These findings support the utility of a heparin-affinity approach coupled with TMT-MS for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.
Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Heparina , Proteoma , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/metabolismo , Humanos , Proteoma/metabolismo , Anciano , Masculino , Femenino , Heparina/metabolismo , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/sangre , Proteómica/métodos , Anciano de 80 o más Años , Proteínas tau/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análisis , Persona de Mediana EdadRESUMEN
Introduction: Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to ß-amyloid (Aß) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. Methods: We employed heparin affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to capture and enrich HBPs in plasma obtained from AD (n=62) and control (n=47) samples. These profiles were then correlated to a consensus AD brain proteome, as well as with Aß, tau and phosphorylated tau (pTau) CSF biomarkers from the same individuals. We then leveraged published human postmortem brain proteome datasets to assess the overlap with the heparin-enriched plasma proteome. Results: Heparin-enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundance proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude were detectable. Utilizing a consensus AD brain protein co-expression network, we observed that specific plasma HBPs exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes highlighting the complex interplay between the two compartments. Elevated HBPs in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate within Aß deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and APOE. Additionally, heparin enriched plasma proteins demonstrated significant correlations with conventional AD CSF biomarkers, including Aß, total tau, pTau, and plasma pTau from the same individuals. Conclusion: These findings support the utility of a heparin-affinity approach for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.
RESUMEN
Dysfunction of the neurovascular unit stands as a significant pathological hallmark of Alzheimer's disease (AD) and age-related neurodegenerative diseases. Nevertheless, detecting vascular changes in the brain within bulk tissues has proven challenging, limiting our ability to characterize proteomic alterations from less abundant cell types. To address this challenge, we conducted quantitative proteomic analyses on both bulk brain tissues and cerebrovascular-enriched fractions from the same individuals, encompassing cognitively unimpaired control, progressive supranuclear palsy (PSP), and AD cases. Protein co-expression network analysis identified modules unique to the cerebrovascular fractions, specifically enriched with pericytes, endothelial cells, and smooth muscle cells. Many of these modules also exhibited significant correlations with amyloid plaques, cerebral amyloid angiopathy (CAA), and/or tau pathology in the brain. Notably, the protein products within AD genetic risk loci were found concentrated within modules unique to the vascular fractions, consistent with a role of cerebrovascular deficits in the etiology of AD. To prioritize peripheral AD biomarkers associated with vascular dysfunction, we assessed the overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with a vascular-enriched network modules in the brain. This analysis highlighted matrisome proteins, SMOC1 and SMOC2, as being increased in CSF, plasma, and brain. Immunohistochemical analysis revealed SMOC1 deposition in both parenchymal plaques and CAA in the AD brain, whereas SMOC2 was predominantly localized to CAA. Collectively, these findings significantly enhance our understanding of the involvement of cerebrovascular abnormalities in AD, shedding light on potential biomarkers and molecular pathways associated with CAA and vascular dysfunction in neurodegenerative diseases.