Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(4): 1144-1151, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36749930

RESUMEN

Thermophotovoltaic (TPV) generators provide continuous and high-efficiency power output by utilizing local thermal emitters to convert energy from various sources to thermal radiation matching the bandgaps of photovoltaic cells. Lack of effective guidelines for thermal emission control at high temperatures, poor thermal stability, and limited fabrication scalability are the three key challenges for the practical deployment of TPV devices. Here we develop a hierarchical sequential-learning optimization framework and experimentally realize a 6″ module-scale polaritonic thermal emitter with bandwidth-controlled thermal emission as well as excellent thermal stability at 1473 K. The 300 nm bandwidth thermal emission is realized by a complex photon polariton based on the superposition of Tamm plasmon polariton and surface plasmon polariton. We experimentally achieve a spectral efficiency of 65.6% (wavelength range of 0.4-8 µm) with statistical deviation less than 4% over the 6″ emitter, demonstrating industrial-level reliability for module-scale TPV applications.

2.
Opt Express ; 31(3): 4964-4977, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36785451

RESUMEN

We present a general framework for inverse design of nanopatterned surfaces that maximize spatially averaged surface-enhanced Raman (SERS) spectra from molecules distributed randomly throughout a material or fluid, building upon a recently proposed trace formulation for optimizing incoherent emission. This leads to radically different designs than optimizing SERS emission at a single known location, as we illustrate using several 2D design problems addressing effects of hot-spot density, angular selectivity, and nonlinear damage. We obtain optimized structures that perform about 4 × better than coating with optimized spheres or bowtie structures and about 20 × better when the nonlinear damage effects are included.

3.
Opt Express ; 31(15): 24260-24272, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37475257

RESUMEN

Traditional optical elements and conventional metasurfaces obey shift-invariance in the paraxial regime. For imaging systems obeying paraxial shift-invariance, a small shift in input angle causes a corresponding shift in the sensor image. Shift-invariance has deep implications for the design and functionality of optical devices, such as the necessity of free space between components (as in compound objectives made of several curved surfaces). We present a method for nanophotonic inverse design of compact imaging systems whose resolution is not constrained by paraxial shift-invariance. Our method is end-to-end, in that it integrates density-based full-Maxwell topology optimization with a fully iterative elastic-net reconstruction algorithm. By the design of nanophotonic structures that scatter light in a non-shift-invariant manner, our optimized nanophotonic imaging system overcomes the limitations of paraxial shift-invariance, achieving accurate, noise-robust image reconstruction beyond shift-invariant resolution.

4.
Curr Diab Rep ; 23(8): 207-216, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37284921

RESUMEN

PURPOSE OF REVIEW: Multiple studies report an increased incidence of diabetes following SARS-CoV-2 infection. Given the potential increased global burden of diabetes, understanding the effect of SARS-CoV-2 in the epidemiology of diabetes is important. Our aim was to review the evidence pertaining to the risk of incident diabetes after COVID-19 infection. RECENT FINDINGS: Incident diabetes risk increased by approximately 60% compared to patients without SARS-CoV-2 infection. Risk also increased compared to non-COVID-19 respiratory infections, suggesting SARS-CoV-2-mediated mechanisms rather than general morbidity after respiratory illness. Evidence is mixed regarding the association between SARS-CoV-2 infection and T1D. SARS-CoV-2 infection is associated with an elevated risk of T2D, but it is unclear whether the incident diabetes is persistent over time or differs in severity over time. SARS-CoV-2 infection is associated with an increased risk of incident diabetes. Future studies should evaluate vaccination, viral variant, and patient- and treatment-related factors that influence risk.


Asunto(s)
COVID-19 , Diabetes Mellitus , Humanos , SARS-CoV-2 , Diabetes Mellitus/epidemiología , Incidencia
5.
J Biomed Inform ; 139: 104295, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36716983

RESUMEN

Healthcare datasets obtained from Electronic Health Records have proven to be extremely useful for assessing associations between patients' predictors and outcomes of interest. However, these datasets often suffer from missing values in a high proportion of cases, whose removal may introduce severe bias. Several multiple imputation algorithms have been proposed to attempt to recover the missing information under an assumed missingness mechanism. Each algorithm presents strengths and weaknesses, and there is currently no consensus on which multiple imputation algorithm works best in a given scenario. Furthermore, the selection of each algorithm's parameters and data-related modeling choices are also both crucial and challenging. In this paper we propose a novel framework to numerically evaluate strategies for handling missing data in the context of statistical analysis, with a particular focus on multiple imputation techniques. We demonstrate the feasibility of our approach on a large cohort of type-2 diabetes patients provided by the National COVID Cohort Collaborative (N3C) Enclave, where we explored the influence of various patient characteristics on outcomes related to COVID-19. Our analysis included classic multiple imputation techniques as well as simple complete-case Inverse Probability Weighted models. Extensive experiments show that our approach can effectively highlight the most promising and performant missing-data handling strategy for our case study. Moreover, our methodology allowed a better understanding of the behavior of the different models and of how it changed as we modified their parameters. Our method is general and can be applied to different research fields and on datasets containing heterogeneous types.


Asunto(s)
COVID-19 , Humanos , Algoritmos , Proyectos de Investigación , Sesgo , Probabilidad
7.
Opt Express ; 30(3): 4467-4491, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35209683

RESUMEN

We present a photonics topology optimization (TO) package capable of addressing a wide range of practical photonics design problems, incorporating robustness and manufacturing constraints, which can scale to large devices and massive parallelism. We employ a hybrid algorithm that builds on a mature time-domain (FDTD) package Meep to simultaneously solve multiple frequency-domain TO problems over a broad bandwidth. This time/frequency-domain approach is enhanced by new filter-design sources for the gradient calculation and new material-interpolation methods for optimizing dispersive media, as well as by multiple forms of computational parallelism. The package is available as free/open-source software with extensive tutorials and multi-platform support.

8.
Opt Express ; 30(16): 28358-28370, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299033

RESUMEN

We introduce end-to-end inverse design for multi-channel imaging, in which a nanophotonic frontend is optimized in conjunction with an image-processing backend to extract depth, spectral and polarization channels from a single monochrome image. Unlike diffractive optics, we show that subwavelength-scale "metasurface" designs can easily distinguish similar wavelength and polarization inputs. The proposed technique integrates a single-layer metasurface frontend with an efficient Tikhonov reconstruction backend, without any additional optics except a grayscale sensor. Our method yields multi-channel imaging by spontaneous demultiplexing: the metaoptics front-end separates different channels into distinct spatial domains whose locations on the sensor are optimally discovered by the inverse-design algorithm. We present large-area metasurface designs, compatible with standard lithography, for multi-spectral imaging, depth-spectral imaging, and "all-in-one" spectro-polarimetric-depth imaging with robust reconstruction performance (≲ 10% error with 1% detector noise). In contrast to neural networks, our framework is physically interpretable and does not require large training sets. It can be used to reconstruct arbitrary three-dimensional scenes with full multi-wavelength spectra and polarization textures.

9.
Opt Express ; 29(15): 23916-23938, 2021 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-34614647

RESUMEN

We present a unified density-based topology-optimization framework that yields integrated photonic designs optimized for manufacturing constraints including all those of commercial semiconductor foundries. We introduce a new method to impose minimum-area and minimum-enclosed-area constraints, and simultaneously adapt previous techniques for minimum linewidth, linespacing, and curvature, all of which are implemented without any additional re-parameterizations. Furthermore, we show how differentiable morphological transforms can be used to produce devices that are robust to over/under-etching while also satisfying manufacturing constraints. We demonstrate our methodology by designing three broadband silicon-photonics devices for nine different foundry-constraint combinations.

10.
Proc Natl Acad Sci U S A ; 115(26): 6614-6619, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29891711

RESUMEN

We present both an innovative theoretical model and an experimental validation of a molecular gas optically pumped far-infrared (OPFIR) laser at 0.25 THz that exhibits 10× greater efficiency (39% of the Manley-Rowe limit) and 1,000× smaller volume than comparable commercial lasers. Unlike previous OPFIR-laser models involving only a few energy levels that failed even qualitatively to match experiments at high pressures, our ab initio theory matches experiments quantitatively, within experimental uncertainties with no free parameters, by accurately capturing the interplay of millions of degrees of freedom in the laser. We show that previous OPFIR lasers were inefficient simply by being too large and that high powers favor high pressures and small cavities. We believe that these results will revive interest in OPFIR laser as a powerful and compact source of terahertz radiation.

11.
J Nurs Scholarsh ; 53(3): 306-314, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33720514

RESUMEN

PURPOSE: The rapid implementation of electronic health records (EHRs) resulted in a lack of data standardization and created considerable difficulty for secondary use of EHR documentation data within and between organizations. While EHRs contain documentation data (input), nurses and healthcare organizations rarely have useable documentation data (output). The purpose of this article is to describe a method of standardizing EHR flowsheet documentation data using information models (IMs) to support exchange, quality improvement, and big data research. As an exemplar, EHR flowsheet metadata (input) from multiple organizations was used to validate a fall prevention IM. DESIGN: A consensus-based, qualitative, descriptive approach was used to identify a minimum set of essential fall prevention data concepts documented by staff nurses in acute care. The goal was to increase generalizable and comparable nurse-sensitive data on the prevention of falls across organizations for big data research. METHODS: The research team conducted a retrospective, observational study using an iterative, consensus-based approach to map, analyze, and evaluate nursing flowsheet metadata contributed by eight health systems. The team used FloMap software to aggregate flowsheet data across organizations for mapping and comparison of data to a reference IM. The FloMap analysis was refined with input from staff nurse subject matter experts, review of published evidence, current documentation standards, Magnet Recognition nursing standards, and informal fall prevention nursing use cases. FINDINGS: Flowsheet metadata analyzed from the EHR systems represented 6.6 million patients, 27 million encounters, and 683 million observations. Compared to the original reference IM, five new IM classes were added, concepts were reduced by 14 (from 57 to 43), and 157 value set items were added. The final fall prevention IM incorporated 11 condition or age-specific fall risk screening tools and a fall event details class with 14 concepts. CONCLUSION: The iterative, consensus-based refinement and validation of the fall prevention IM from actual EHR fall prevention flowsheet documentation contributes to the ability to semantically exchange and compare fall prevention data across multiple health systems and organizations. This method and approach provides a process for standardizing flowsheet data as coded data for information exchange and use in big data research. CLINICAL RELEVANCE: Opportunities exist to work with EHR vendors and the Office of the National Coordinator for Health Information Technology to implement standardized IMs within EHRs to expand interoperability of nurse-sensitive data.


Asunto(s)
Accidentes por Caídas/prevención & control , Documentación/métodos , Registros Electrónicos de Salud/normas , Modelos Teóricos , Registros de Enfermería , Humanos , Estándares de Referencia , Estudios Retrospectivos
12.
Opt Express ; 28(16): 24185-24197, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32752402

RESUMEN

By computational optimization of air-void cavities in metallic substrates, we show that the local density of states (LDOS) can reach within a factor of ≈10 of recent theoretical upper limits and within a factor ≈4 for the single-polarization LDOS, demonstrating that the theoretical limits are nearly attainable. Optimizing the total LDOS results in a spontaneous symmetry breaking where it is preferable to couple to a specific polarization. Moreover, simple shapes such as optimized cylinders attain nearly the performance of complicated many-parameter optima, suggesting that only one or two key parameters matter in order to approach the theoretical LDOS bounds for metallic resonators.

13.
Opt Express ; 28(15): 22264-22265, 2020 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-32752491

RESUMEN

In this erratum, we correct two minor algebraic errors from our previous published manuscript [Opt. Express 27, 35189 (2019)], which do not affect the main results or conclusions, and make a corresponding small change to one figure.

14.
Opt Express ; 28(4): 4444-4462, 2020 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-32121681

RESUMEN

We show that topology optimization (TO) of metallic resonators can lead to ∼102 × improvement in surface-enhanced Raman scattering (SERS) efficiency compared to traditional resonant structures such as bowtie antennas. TO inverse design leads to surprising structures very different from conventional designs, which simultaneously optimize focusing of the incident wave and emission from the Raman dipole. We consider isolated metallic particles as well as more complicated configurations such as periodic surfaces or resonators coupled to dielectric waveguides, and the benefits of TO are even greater in the latter case. Our results are motivated by recent rigorous upper bounds to Raman scattering enhancement, and shed light on the extent to which these bounds are achievable.

15.
Opt Express ; 28(23): 33854-33868, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182865

RESUMEN

We demonstrate new axisymmetric inverse-design techniques that can solve problems radically different from traditional lenses, including reconfigurable lenses (that shift a multi-frequency focal spot in response to refractive-index changes) and widely separated multi-wavelength lenses (λ = 1 µm and 10 µm). We also present experimental validation for an axisymmetric inverse-designed monochrome lens in the near-infrared fabricated via two-photon polymerization. Axisymmetry allows fullwave Maxwell solvers to be scaled up to structures hundreds or even thousands of wavelengths in diameter before requiring domain-decomposition approximations, while multilayer topology optimization with ∼105 degrees of freedom can tackle challenging design problems even when restricted to axisymmetric structures.

16.
J Therm Biol ; 88: 102527, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32126002

RESUMEN

Thermal tolerance allows many organisms, including insects, to withstand stressful temperatures. Thermal generalists are expected to have higher thermal tolerance than specialists, but the environmental conditions leading to the evolution of a thermal generalist life history are not fully understood. Thermal variability has been put forth as an evolutionary driver of high thermal tolerance, but rarely has this been empirically tested. We used a generalist agricultural pest grasshopper, Melanoplus differentialis, to test upper and lower thermal limits of populations that experienced different levels of thermal variability. We quantified thermal heterogeneity at five sites in a longitudinal transect in the Midwestern U.S. by examining, over a 101-year period, 1) variance in daily thermal maxima and minima; and 2) daily range. Also, as a measure of a biologically relevant thermal extreme, we depicted days per month at each site that reached a stressfully high temperature for M. differentialis. We collected individuals from these sites and tested their upper and lower thermal limits. We found that most of our metrics of thermal heterogeneity differed among sites, while all sites experienced an average of at least two stressfully high temperature events per month. We found that heavier males from these sites were able to withstand both warmer and colder temperatures than smaller males, while heavier females had no thermal advantage over lighter females. However, site of origin had no effect on thermal tolerance. Our findings indicate three things: 1) there is no clear correlation between thermal variability and thermal tolerance in the populations we studied; 2) weight affects thermal tolerance range among sites for M. differentialis males, and 3) thermal extremes may be more important than thermal variability in determining CTMax in this species.


Asunto(s)
Saltamontes/fisiología , Termotolerancia/fisiología , Animales , Femenino , Masculino , Temperatura
17.
Comput Inform Nurs ; 38(10): 484-489, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33045153

RESUMEN

Nurse leaders working with large volumes of interdisciplinary healthcare data are in need of advanced guidance for conducting analytics to improve population outcomes. This article reports the development of a roadmap to help nursing leaders use data science principles and tools to inform decision-making, thus supporting research and approaches in clinical practice that improve healthcare for all. A consensus-building and iterative process was utilized based on the Cross-Industry Standard Process for Data Mining approach to big data science. Using the model, a set of components are described that combine and achieve a process for data science projects applicable to healthcare issues with the potential for improving population health outcomes. The roadmap was tested using a workshop format. The workshop was presented to two audiences: nurse leaders and informatics/healthcare leaders. Results were positive and included suggestions for how to further refine and communicate the roadmap.


Asunto(s)
Macrodatos , Formación de Concepto , Ciencia de los Datos , Atención a la Salud , Educación , Liderazgo , Enfermeras Administradoras , Minería de Datos , Toma de Decisiones , Humanos
18.
Opt Express ; 27(22): 32445-32453, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684457

RESUMEN

We introduce an overlapping-domain approach to large-area metasurface design, in which each simulated domain consists of a unit cell and overlapping regions from the neighboring cells plus PML absorbers. We show that our approach generates greatly improved metalens quality compared to designs produced using a locally periodic approximation, thanks to ∼10× better accuracy with similar computational cost. We use the new approach with topology optimization to design large-area (200λ) high-NA (0.71) multichrome and broadband achromatic lenses with high focusing efficiency (∼50%), greatly improving upon previously reported works.

19.
Opt Express ; 27(24): 35189-35202, 2019 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-31878692

RESUMEN

The low efficiency of Raman spectroscopy can be overcome by placing the active molecules in the vicinity of scatterers, typically rough surfaces or nanostructures with various shapes. This surface-enhanced Raman scattering (SERS) leads to substantial enhancement that depends on the scatterer that is used. In this work, we find fundamental upper bounds on the Raman enhancement for arbitrary-shaped scatterers, depending only on its material constants and the separation distance from the molecule. According to our metric, silver is optimal in visible wavelengths while aluminum is better in the near-UV region. Our general analytical bound scales as the volume of the scatterer and the inverse sixth power of the distance to the active molecule. Numerical computations show that simple geometries fall short of the bounds, suggesting further design opportunities for future improvement. For periodic scatterers, we use two formulations to discover different bounds, and the tighter of the two always must apply. Comparing these bounds suggests an optimal period depending on the volume of the scatterer.

20.
Opt Express ; 27(11): 15765-15775, 2019 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-31163767

RESUMEN

We demonstrate optimization of optical metasurfaces over 105-106 degrees of freedom in two and three dimensions, 100-1000+ wavelengths (λ) in diameter, with 100+ parameters per λ2. In particular, we show how topology optimization, with one degree of freedom per high-resolution "pixel," can be extended to large areas with the help of a locally periodic approximation that was previously only used for a few parameters per λ2. In this way, we can computationally discover completely unexpected metasurface designs for challenging multi-frequency, multi-angle problems, including designs for fully coupled multi-layer structures with arbitrary per-layer patterns. Unlike typical metasurface designs based on subwavelength unit cells, our approach can discover both sub- and supra-wavelength patterns and can obtain both the near and far fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA