Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Virol ; 98(8): e0071124, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082839

RESUMEN

Cytotoxic T lymphocytes (CTLs) mediate host defense against viral and intracellular bacterial infections and tumors. However, the magnitude of CTL response and their function needed to confer heterosubtypic immunity against influenza virus infection are unknown. We addressed the role of CD8+ T cells in the absence of any cross-reactive antibody responses to influenza viral proteins using an adenoviral vector expressing a 9mer amino acid sequence recognized by CD8+ T cells. Our results indicate that both CD8+ T cell frequency and function are crucial for heterosubtypic immunity. Low morbidity, lower viral lung titers, low to minimal lung pathology, and better survival upon heterosubtypic virus challenge correlated with the increased frequency of NP-specific CTLs. NP-CD8+ T cells induced by differential infection doses displayed distinct RNA transcriptome profiles and functional properties. CD8+ T cells induced by a high dose of influenza virus secreted significantly higher levels of IFN-γ and exhibited higher levels of cytotoxic function. The mice that received NP-CD8+ T cells from the high-dose virus recipients through adoptive transfer had lower viral titers following viral challenge than those induced by the low dose of virus, suggesting differential cellular programming by antigen dose. Enhanced NP-CD8+ T-cell functions induced by a higher dose of influenza virus strongly correlated with the increased expression of cellular and metabolic genes, indicating a shift to a more glycolytic metabolic phenotype. These findings have implications for developing effective T cell vaccines against infectious diseases and cancer. IMPORTANCE: Cytotoxic T lymphocytes (CTLs) are an important component of the adaptive immune system that clears virus-infected cells or tumor cells. Hence, developing next-generation vaccines that induce or recall CTL responses against cancer and infectious diseases is crucial. However, it is not clear if the frequency, function, or both are essential in conferring protection, as in the case of influenza. In this study, we demonstrate that both CTL frequency and function are crucial for providing heterosubtypic immunity to influenza by utilizing an Ad-viral vector expressing a CD8 epitope only to rule out the role of antibodies, single-cell RNA-seq analysis, as well as adoptive transfer experiments. Our findings have implications for developing T cell vaccines against infectious diseases and cancer.


Asunto(s)
Linfocitos T CD8-positivos , Infecciones por Orthomyxoviridae , Linfocitos T Citotóxicos , Animales , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T Citotóxicos/inmunología , Ratones Endogámicos C57BL , Femenino , Traslado Adoptivo , Interferón gamma/inmunología , Interferón gamma/metabolismo , Proteínas de la Nucleocápside/inmunología , Pulmón/inmunología , Pulmón/virología , Proteínas de Unión al ARN/inmunología , Proteínas de Unión al ARN/genética , Nucleoproteínas/inmunología , Nucleoproteínas/genética , Proteínas del Núcleo Viral/inmunología , Proteínas del Núcleo Viral/genética
2.
PLoS Pathog ; 19(5): e1011219, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37253061

RESUMEN

Young men who have sex with men (YMSM) are disproportionately affected by HIV and bacterial sexually transmitted infections (STI) including gonorrhea, chlamydia, and syphilis; yet research into the immunologic effects of these infections is typically pursued in siloes. Here, we employed a syndemic approach to understand potential interactions of these infections on the rectal mucosal immune environment among YMSM. We enrolled YMSM aged 18-29 years with and without HIV and/or asymptomatic bacterial STI and collected blood, rectal secretions, and rectal tissue biopsies. YMSM with HIV were on suppressive antiretroviral therapy (ART) with preserved blood CD4 cell counts. We defined 7 innate and 19 adaptive immune cell subsets by flow cytometry, the rectal mucosal transcriptome by RNAseq, and the rectal mucosal microbiome by 16S rRNA sequencing and examined the effects of HIV and STI and their interactions. We measured tissue HIV RNA viral loads among YMSM with HIV and HIV replication in rectal explant challenge experiments among YMSM without HIV. HIV, but not asymptomatic STI, was associated with profound alterations in the cellular composition of the rectal mucosa. We did not detect a difference in the microbiome composition associated with HIV, but asymptomatic bacterial STI was associated with a higher probability of presence of potentially pathogenic taxa. When examining the rectal mucosal transcriptome, there was evidence of statistical interaction; asymptomatic bacterial STI was associated with upregulation of numerous inflammatory genes and enrichment for immune response pathways among YMSM with HIV, but not YMSM without HIV. Asymptomatic bacterial STI was not associated with differences in tissue HIV RNA viral loads or in HIV replication in explant challenge experiments. Our results suggest that asymptomatic bacterial STI may contribute to inflammation particularly among YMSM with HIV, and that future research should examine potential harms and interventions to reduce the health impact of these syndemic infections.


Asunto(s)
Infecciones por Chlamydia , Gonorrea , Infecciones por VIH , Minorías Sexuales y de Género , Enfermedades de Transmisión Sexual , Masculino , Humanos , Enfermedades de Transmisión Sexual/complicaciones , Enfermedades de Transmisión Sexual/diagnóstico , Enfermedades de Transmisión Sexual/terapia , Homosexualidad Masculina , ARN Ribosómico 16S , Infecciones por Chlamydia/complicaciones , Infecciones por VIH/complicaciones , Gonorrea/epidemiología
3.
Am J Hum Genet ; 106(1): 26-40, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31870554

RESUMEN

The 22q11.2 deletion syndrome (22q11.2DS) results from non-allelic homologous recombination between low-copy repeats termed LCR22. About 60%-70% of individuals with the typical 3 megabase (Mb) deletion from LCR22A-D have congenital heart disease, mostly of the conotruncal type (CTD), whereas others have normal cardiac anatomy. In this study, we tested whether variants in the hemizygous LCR22A-D region are associated with risk for CTDs on the basis of the sequence of the 22q11.2 region from 1,053 22q11.2DS individuals. We found a significant association (FDR p < 0.05) of the CTD subset with 62 common variants in a single linkage disequilibrium (LD) block in a 350 kb interval harboring CRKL. A total of 45 of the 62 variants were associated with increased risk for CTDs (odds ratio [OR) ranges: 1.64-4.75). Associations of four variants were replicated in a meta-analysis of three genome-wide association studies of CTDs in affected individuals without 22q11.2DS. One of the replicated variants, rs178252, is located in an open chromatin region and resides in the double-elite enhancer, GH22J020947, that is predicted to regulate CRKL (CRK-like proto-oncogene, cytoplasmic adaptor) expression. Approximately 23% of patients with nested LCR22C-D deletions have CTDs, and inactivation of Crkl in mice causes CTDs, thus implicating this gene as a modifier. Rs178252 and rs6004160 are expression quantitative trait loci (eQTLs) of CRKL. Furthermore, set-based tests identified an enhancer that is predicted to target CRKL and is significantly associated with CTD risk (GH22J020946, sequence kernal association test (SKAT) p = 7.21 × 10-5) in the 22q11.2DS cohort. These findings suggest that variance in CTD penetrance in the 22q11.2DS population can be explained in part by variants affecting CRKL expression.


Asunto(s)
Deleción Cromosómica , Cromosomas Humanos Par 22/genética , Cardiopatías Congénitas/genética , Polimorfismo de Nucleótido Simple , Estudios de Casos y Controles , Estudios de Cohortes , Femenino , Estudio de Asociación del Genoma Completo , Cardiopatías Congénitas/patología , Humanos , Desequilibrio de Ligamiento , Masculino , Fenotipo , Proto-Oncogenes Mas , Duplicaciones Segmentarias en el Genoma
4.
Mol Psychiatry ; 26(8): 4496-4510, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32015465

RESUMEN

Schizophrenia occurs in about one in four individuals with 22q11.2 deletion syndrome (22q11.2DS). The aim of this International Brain and Behavior 22q11.2DS Consortium (IBBC) study was to identify genetic factors that contribute to schizophrenia, in addition to the ~20-fold increased risk conveyed by the 22q11.2 deletion. Using whole-genome sequencing data from 519 unrelated individuals with 22q11.2DS, we conducted genome-wide comparisons of common and rare variants between those with schizophrenia and those with no psychotic disorder at age ≥25 years. Available microarray data enabled direct comparison of polygenic risk for schizophrenia between 22q11.2DS and independent population samples with no 22q11.2 deletion, with and without schizophrenia (total n = 35,182). Polygenic risk for schizophrenia within 22q11.2DS was significantly greater for those with schizophrenia (padj = 6.73 × 10-6). Novel reciprocal case-control comparisons between the 22q11.2DS and population-based cohorts showed that polygenic risk score was significantly greater in individuals with psychotic illness, regardless of the presence of the 22q11.2 deletion. Within the 22q11.2DS cohort, results of gene-set analyses showed some support for rare variants affecting synaptic genes. No common or rare variants within the 22q11.2 deletion region were significantly associated with schizophrenia. These findings suggest that in addition to the deletion conferring a greatly increased risk to schizophrenia, the risk is higher when the 22q11.2 deletion and common polygenic risk factors that contribute to schizophrenia in the general population are both present.


Asunto(s)
Síndrome de DiGeorge , Trastornos Psicóticos , Esquizofrenia , Adulto , Estudios de Casos y Controles , Estudios de Cohortes , Síndrome de DiGeorge/genética , Humanos , Esquizofrenia/genética
5.
Angew Chem Int Ed Engl ; 60(31): 17009-17017, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-33979483

RESUMEN

Adenosine-to-inosine (A-to-I) editing is a conserved eukaryotic RNA modification that contributes to development, immune response, and overall cellular function. Here, we utilize Endonuclease V (EndoV), which binds specifically to inosine in RNA, to develop an EndoV-linked immunosorbency assay (EndoVLISA) as a rapid, plate-based chemiluminescent method for measuring global A-to-I editing signatures in cellular RNA. We first optimize and validate our assay with chemically synthesized oligonucleotides. We then demonstrate rapid detection of inosine content in treated cell lines, demonstrating equivalent performance against current standard RNA-seq approaches. Lastly, we deploy our EndoVLISA for profiling differential A-to-I RNA editing signatures in normal and diseased human tissue, illustrating the utility of our platform as a diagnostic bioassay. Together, the EndoVLISA method is cost-effective, straightforward, and utilizes common laboratory equipment, offering a highly accessible new approach for studying A-to-I editing. Moreover, the multi-well plate format makes this the first assay amenable for direct high-throughput quantification of A-to-I editing for applications in disease detection and drug development.


Asunto(s)
Adenosina/química , Inosina/química , Mediciones Luminiscentes , ARN/análisis , Humanos , Edición de ARN
6.
J Am Chem Soc ; 142(11): 5241-5251, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32109061

RESUMEN

Creating accurate maps of A-to-I RNA editing activity is vital to improving our understanding of the biological role of this process and harnessing it as a signal for disease diagnosis. Current RNA sequencing techniques are susceptible to random sampling limitations due to the complexity of the transcriptome and require large amounts of RNA material, specialized instrumentation, and high read counts to accurately interrogate A-to-I editing sites. To address these challenges, we show that Escherichia coli Endonuclease V (eEndoV), an inosine-cleaving enzyme, can be repurposed to bind and isolate A-to-I edited transcripts from cellular RNA. While Mg2+ enables eEndoV to catalyze RNA cleavage, we show that similar levels of Ca2+ instead promote binding of inosine without cleavage and thus enable high affinity capture of inosine in RNA. We leverage this capability to demonstrate EndoVIPER-seq (Endonuclease V inosine precipitation enrichment sequencing) as a facile and effective method to enrich A-to-I edited transcripts prior to RNA-seq, producing significant increases in the coverage and detection of identified editing sites. We envision the use of this approach as a straightforward and cost-effective strategy to improve the epitranscriptomic informational density of RNA samples, facilitating a deeper understanding of the functional roles of A-to-I editing.


Asunto(s)
Desoxirribonucleasa (Dímero de Pirimidina)/química , Inosina/química , Edición de ARN , ARN Mensajero/química , Calcio/química , Escherichia coli/enzimología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Análisis de Secuencia de ARN/métodos
7.
Proc Natl Acad Sci U S A ; 114(10): E1923-E1932, 2017 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-28223510

RESUMEN

The analysis of human whole-genome sequencing data presents significant computational challenges. The sheer size of datasets places an enormous burden on computational, disk array, and network resources. Here, we present an integrated computational package, PEMapper/PECaller, that was designed specifically to minimize the burden on networks and disk arrays, create output files that are minimal in size, and run in a highly computationally efficient way, with the single goal of enabling whole-genome sequencing at scale. In addition to improved computational efficiency, we implement a statistical framework that allows for a base by base error model, allowing this package to perform as well or better than the widely used Genome Analysis Toolkit (GATK) in all key measures of performance on human whole-genome sequences.


Asunto(s)
Biología Computacional/métodos , Genoma Humano/genética , Programas Informáticos , Secuenciación Completa del Genoma/métodos , Algoritmos , Bases de Datos Genéticas , Humanos , Polimorfismo de Nucleótido Simple/genética
8.
PLoS Genet ; 12(5): e1006040, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27152526

RESUMEN

Next-generation sequencing of DNA provides an unprecedented opportunity to discover rare genetic variants associated with complex diseases and traits. However, the common practice of first calling underlying genotypes and then treating the called values as known is prone to false positive findings, especially when genotyping errors are systematically different between cases and controls. This happens whenever cases and controls are sequenced at different depths, on different platforms, or in different batches. In this article, we provide a likelihood-based approach to testing rare variant associations that directly models sequencing reads without calling genotypes. We consider the (weighted) burden test statistic, which is the (weighted) sum of the score statistic for assessing effects of individual variants on the trait of interest. Because variant locations are unknown, we develop a simple, computationally efficient screening algorithm to estimate the loci that are variants. Because our burden statistic may not have mean zero after screening, we develop a novel bootstrap procedure for assessing the significance of the burden statistic. We demonstrate through extensive simulation studies that the proposed tests are robust to a wide range of differential sequencing qualities between cases and controls, and are at least as powerful as the standard genotype calling approach when the latter controls type I error. An application to the UK10K data reveals novel rare variants in gene BTBD18 associated with childhood onset obesity. The relevant software is freely available.


Asunto(s)
Variación Genética/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Funciones de Verosimilitud , Análisis de Secuencia de ADN , Algoritmos , Estudios de Casos y Controles , Genotipo , Humanos , Fenotipo , Polimorfismo de Nucleótido Simple , Programas Informáticos
9.
PLoS Comput Biol ; 11(8): e1004448, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26267278

RESUMEN

With rapid decline of the sequencing cost, researchers today rush to embrace whole genome sequencing (WGS), or whole exome sequencing (WES) approach as the next powerful tool for relating genetic variants to human diseases and phenotypes. A fundamental step in analyzing WGS and WES data is mapping short sequencing reads back to the reference genome. This is an important issue because incorrectly mapped reads affect the downstream variant discovery, genotype calling and association analysis. Although many read mapping algorithms have been developed, the majority of them uses the universal reference genome and do not take sequence variants into consideration. Given that genetic variants are ubiquitous, it is highly desirable if they can be factored into the read mapping procedure. In this work, we developed a novel strategy that utilizes genotypes obtained a priori to customize the universal haploid reference genome into a personalized diploid reference genome. The new strategy is implemented in a program named RefEditor. When applying RefEditor to real data, we achieved encouraging improvements in read mapping, variant discovery and genotype calling. Compared to standard approaches, RefEditor can significantly increase genotype calling consistency (from 43% to 61% at 4X coverage; from 82% to 92% at 20X coverage) and reduce Mendelian inconsistency across various sequencing depths. Because many WGS and WES studies are conducted on cohorts that have been genotyped using array-based genotyping platforms previously or concurrently, we believe the proposed strategy will be of high value in practice, which can also be applied to the scenario where multiple NGS experiments are conducted on the same cohort. The RefEditor sources are available at https://github.com/superyuan/refeditor.


Asunto(s)
Mapeo Cromosómico/métodos , Diploidia , Genómica/métodos , Técnicas de Genotipaje/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Programas Informáticos , Bases de Datos Genéticas , Genoma , Humanos , Análisis de Secuencia de ADN
11.
Cancer Res ; 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39207369

RESUMEN

The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical strategies designed to exploit growth within the context of invasion are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early 3D invasion phenotypes in different molecular subtypes of KRAS-driven lung adenocarcinoma (LUAD). Combined live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix and transcriptomic profiling identified mutant LKB1-specific upregulation of BMP6. LKB1 loss increased BMP6 signaling, which induced the canonical iron regulatory hormone hepcidin. Intact LKB1 was necessary to maintain BMP6 signaling homeostasis and restrict ALK2/BMP6-fueled growth. Pre-clinical studies in a Kras/Lkb1-mutant syngeneic mouse model and in a xenograft model showed potent growth suppression by inhibiting the ALK2/BMP6 signaling axis with single agent inhibitors that are currently in clinical trials. Lastly, BMP6 expression was elevated in LKB1-mutant early-stage lung cancer patient tumors. These results are consistent with a model where LKB1 acts as a 'brake' to iron regulated growth and suggest that ALK2 inhibition can be used for patients with LKB1-mutant tumors.

12.
J Psychosom Res ; 175: 111518, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37832274

RESUMEN

OBJECTIVE: Patients with head and neck cancer (HNC) experience psychoneurological symptoms (PNS, i.e., depression, fatigue, sleep disturbance, pain, and cognitive dysfunction) during intensity-modulated radiotherapy (IMRT) that negatively impact their functional status, quality of life, and overall survival. The underlying mechanisms for PNS are still not fully understood. This study aimed to examine differentially expressed genes and pathways related to PNS for patients undergoing IMRT (i.e., before, end of, 6 months, and 12 months after IMRT). METHODS: Participants included 142 patients with HNC (mean age 58.9 ± 10.3 years, 72.5% male, 83.1% White). Total RNA extracted from blood leukocytes were used for genome-wide gene expression assays. Linear mixed effects model was used to examine the association between PNS and gene expression across time. Gene Ontology (GO) enrichment analysis was employed to identify pathways related to PNS. RESULTS: A total of 1352 genes (162 upregulated, 1190 downregulated) were significantly associated with PNS across time (false discovery rate (FDR) < 0.05). Among these genes, 112 GO terms were identified (FDR < 0.05). The top 20 GO terms among the significant upregulated genes were related to immune and inflammatory responses, while the top 20 GO terms among the significant downregulated genes were associated with telomere maintenance. CONCLUSION: This study is the first to identify genes and pathways linked to immune and inflammatory responses and telomere maintenance that are associated with PNS in patients with HNC receiving IMRT. Inflammation and aging markers may be candidate biomarkers for PNS. Understanding biological markers may produce targets for novel interventions.


Asunto(s)
Neoplasias de Cabeza y Cuello , Radioterapia de Intensidad Modulada , Humanos , Masculino , Persona de Mediana Edad , Anciano , Femenino , Estudios Longitudinales , Calidad de Vida , Neoplasias de Cabeza y Cuello/genética , Inflamación/genética
13.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398244

RESUMEN

The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that likely contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical discovery strategies designed to exploit invasive phenotypes are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early invasion phenotypes in the two most prominent molecular subtypes, TP53 and LKB1, of KRAS-driven lung adenocarcinoma (LUAD). By combining live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix with RNA transcriptome profiling, we identified the LKB1-specific upregulation of bone morphogenetic protein 6 (BMP6). Examination of early-stage lung cancer patients confirmed upregulation of BMP6 in LKB1-mutant lung tumors. At the molecular level, we find that the canonical iron regulatory hormone Hepcidin is induced via BMP6 signaling upon LKB1 loss, where intact LKB1 kinase activity is necessary to maintain signaling homeostasis. Furthermore, pre-clinical studies in a novel Kras/Lkb1-mutant syngeneic mouse model show that potent growth suppression was achieved by inhibiting the ALK2/BMP6 signaling axis with single agents that are currently in clinical trials. We show that alterations in the iron homeostasis pathway are accompanied by simultaneous upregulation of ferroptosis protection proteins. Thus, LKB1 is sufficient to regulate both the 'gas' and 'breaks' to finely tune iron-regulated tumor progression.

14.
Infect Control Hosp Epidemiol ; 44(2): 332-334, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34866561

RESUMEN

We performed an epidemiological investigation and genome sequencing of severe acute respiratory coronavirus virus 2 (SARS-CoV-2) to define the source and scope of an outbreak in a cluster of hospitalized patients. Lack of appropriate respiratory hygiene led to SARS-CoV-2 transmission to patients and healthcare workers during a single hemodialysis session, highlighting the importance of infection prevention precautions.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Brotes de Enfermedades , Diálisis Renal/efectos adversos , Genómica
15.
bioRxiv ; 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36747658

RESUMEN

Oncogenic RAS mutations drive aggressive cancers that are difficult to treat in the clinic, and while direct inhibition of the most common KRAS variant in lung adenocarcinoma (G12C) is undergoing clinical evaluation, a wide spectrum of oncogenic RAS variants together make up a large percentage of untargetable lung and GI cancers. Here we report that loss-of-function alterations (mutations and deep deletions) in the gene that encodes HD-PTP (PTPN23) occur in up to 14% of lung cancers in the ORIEN Avatar lung cancer cohort, associate with adenosquamous histology, and occur alongside an altered spectrum of KRAS alleles. Furthermore, we show that in publicly available early-stage NSCLC studies loss of HD-PTP is mutually exclusive with loss of LKB1, which suggests they restrict a common oncogenic pathway in early lung tumorigenesis. In support of this, knockdown of HD-PTP in RAS-transformed lung cancer cells is sufficient to promote FAK-dependent invasion. Lastly, knockdown of the Drosophila homolog of HD-PTP (dHD-PTP/Myopic) synergizes to promote RAS-dependent neoplastic progression. Our findings highlight a novel tumor suppressor that can restrict RAS-driven lung cancer oncogenesis and identify a targetable pathway for personalized therapeutic approaches for adenosquamous lung cancer.

16.
NPJ Genom Med ; 8(1): 17, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463940

RESUMEN

Congenital heart disease (CHD) affecting the conotruncal region of the heart, occurs in 40-50% of patients with 22q11.2 deletion syndrome (22q11.2DS). This syndrome is a rare disorder with relative genetic homogeneity that can facilitate identification of genetic modifiers. Haploinsufficiency of TBX1, encoding a T-box transcription factor, is one of the main genes responsible for the etiology of the syndrome. We suggest that genetic modifiers of conotruncal defects in patients with 22q11.2DS may be in the TBX1 gene network. To identify genetic modifiers, we analyzed rare, predicted damaging variants in whole genome sequence of 456 cases with conotruncal defects and 537 controls, with 22q11.2DS. We then performed gene set approaches and identified chromatin regulatory genes as modifiers. Chromatin genes with recurrent damaging variants include EP400, KAT6A, KMT2C, KMT2D, NSD1, CHD7 and PHF21A. In total, we identified 37 chromatin regulatory genes, that may increase risk for conotruncal heart defects in 8.5% of 22q11.2DS cases. Many of these genes were identified as risk factors for sporadic CHD in the general population. These genes are co-expressed in cardiac progenitor cells with TBX1, suggesting that they may be in the same genetic network. The genes KAT6A, KMT2C, CHD7 and EZH2, have been previously shown to genetically interact with TBX1 in mouse models. Our findings indicate that disturbance of chromatin regulatory genes impact the TBX1 gene network serving as genetic modifiers of 22q11.2DS and sporadic CHD, suggesting that there are some shared mechanisms involving the TBX1 gene network in the etiology of CHD.

17.
Front Neurol ; 13: 918022, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911904

RESUMEN

We report the genetic analysis of two consanguineous pedigrees of Pakistani ancestry in which two siblings in each family exhibited developmental delay, epilepsy, intellectual disability and aggressive behavior. Whole-genome sequencing was performed in Family 1, and we identified ~80,000 variants located in regions of homozygosity. Of these, 615 variants had a minor allele frequency ≤ 0.001, and 21 variants had CADD scores ≥ 15. Four homozygous exonic variants were identified in both affected siblings: PDZD7 (c.1348_1350delGAG, p.Glu450del), ALG6 (c.1033G>C, p.Glu345Gln), RBM20 (c.1587C>G, p.Ser529Arg), and CNTNAP2 (c.785G>A, p.Gly228Arg). Sanger sequencing revealed co-segregation of the PDZD7, RBM20, and CNTNAP2 variants with disease in Family 1. Pathogenic variants in PDZD7 and RBM20 are associated with autosomal recessive non-syndromic hearing loss and autosomal dominant dilated cardiomyopathy, respectively, suggesting that these variants are unlikely likely to contribute to the clinical presentation. Gene panel analysis was performed on the two affected siblings in Family 2, and they were found to also be homozygous for the p.Gly228Arg CNTNAP2 variant. Together these families provide a LOD score 2.9 toward p.Gly228Arg CNTNAP2 being a completely penetrant recessive cause of this disease. The clinical presentation of the affected siblings in both families is also consistent with previous reports from individuals with homozygous CNTNAP2 variants where at least one allele was a nonsense variant, frameshift or small deletion. Our data suggests that homozygous CNTNAP2 missense variants can also contribute to disease, thereby expanding the genetic landscape of CNTNAP2 dysfunction.

18.
J Biomol Tech ; 32(2): 74-82, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34121934

RESUMEN

Across the United States, the number of staff scientists (master's- or doctoral-level professionals working in nonfaculty roles) has grown by 35% since 2010, and they play an increasingly important role in research efforts. However, few targeted resources are available, which potentially limits the effectiveness of this group. Launched in 2016, the staff scientist path at Emory has tripled in size over 4 y to 138 staff. The present case study evaluated the perceptions of staff scientists related to onboarding experiences and professional development needs, including those needs arising from coronavirus disease 2019 (COVID-19) impacts in the workplace. A survey of Emory staff scientists was conducted from May to June 2019 as part of a program evaluation initiative to assess perceptions of onboarding and professional development opportunities. Interviews with a subset of scientists informed the survey development and identified COVID-19-related impacts on daily work. Results indicated the need for targeted orientation resources specific to staff scientists, accurate and timely information and resources to support scientists' supervisors, and professional development for scientists in leadership and management-related skills. Remote work associated with COVID-19 accentuated the need for managerial skills, including team development in digital work environments. Findings from this case study can inform policies and practices at Emory and other institutions that employ a similar staff scientist model.


Asunto(s)
COVID-19/epidemiología , Médicos/estadística & datos numéricos , SARS-CoV-2/genética , Lugar de Trabajo , COVID-19/genética , COVID-19/virología , Movilidad Laboral , Femenino , Personal de Salud , Humanos , Masculino , Médicos/psicología , SARS-CoV-2/patogenicidad
19.
BMC Med Genomics ; 14(1): 154, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34107974

RESUMEN

BACKGROUND: Structural rearrangements of the genome, which generally occur during meiosis and result in large-scale (> 1 kb) copy number variants (CNV; deletions or duplications ≥ 1 kb), underlie genomic disorders. Recurrent pathogenic CNVs harbor similar breakpoints in multiple unrelated individuals and are primarily formed via non-allelic homologous recombination (NAHR). Several pathogenic NAHR-mediated recurrent CNV loci demonstrate biases for parental origin of de novo CNVs. However, the mechanism underlying these biases is not well understood. METHODS: We performed a systematic, comprehensive literature search to curate parent of origin data for multiple pathogenic CNV loci. Using a regression framework, we assessed the relationship between parental CNV origin and the male to female recombination rate ratio. RESULTS: We demonstrate significant association between sex-specific differences in meiotic recombination and parental origin biases at these loci (p = 1.07 × 10-14). CONCLUSIONS: Our results suggest that parental origin of CNVs is largely influenced by sex-specific recombination rates and highlight the need to consider these differences when investigating mechanisms that cause structural variation.


Asunto(s)
Genómica
20.
Fertil Steril ; 116(3): 843-854, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34016428

RESUMEN

OBJECTIVE: To identify modifying genes that explains the risk of fragile X-associated primary ovarian insufficiency (FXPOI). DESIGN: Gene-based, case/control association study, followed by a functional screen of highly ranked genes using a Drosophila model. SETTING: Participants were recruited from academic and clinical settings. PATIENT(S): Women with a premutation (PM) who experienced FXPOI at the age of 35 years or younger (n = 63) and women with a PM who experienced menopause at the age of 50 years or older (n = 51) provided clinical information and a deoxyribonucleic acid sample for whole genome sequencing. The functional screen was on the basis of Drosophila TRiP lines. INTERVENTION(S): Clinical information and a DNA sample were collected for whole genome sequencing. MAIN OUTCOME MEASURES: A polygenic risk score derived from common variants associated with natural age at menopause was calculated and associated with the risk of FXPOI. Genes associated with the risk of FXPOI were identified on the basis of the P-value from gene-based association test and an altered level of fecundity when knocked down in the Drosophila PM model. RESULTS: The polygenic risk score on the basis of common variants associated with natural age at menopause explained approximately 8% of the variance in the risk of FXPOI. Further, SUMO1 and KRR1 were identified as possible modifying genes associated with the risk of FXPOI on the basis of an untargeted gene analysis of rare variants. CONCLUSIONS: In addition to the large genetic effect of a PM on ovarian function, the additive effects of common variants associated with natural age at menopause and the effect of rare modifying variants appear to play a role in FXPOI risk.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Menopausia/genética , Mutación , Ovario/fisiopatología , Insuficiencia Ovárica Primaria/genética , Adulto , Factores de Edad , Animales , Animales Modificados Genéticamente , Estudios de Casos y Controles , Drosophila melanogaster/genética , Femenino , Fertilidad/genética , Antecedentes Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Persona de Mediana Edad , Fenotipo , Insuficiencia Ovárica Primaria/diagnóstico , Insuficiencia Ovárica Primaria/fisiopatología , Medición de Riesgo , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA