Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Bioinformatics ; 39(39 Suppl 1): i347-i356, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37387131

RESUMEN

MOTIVATION: Signal peptides (SPs) are short amino acid segments present at the N-terminus of newly synthesized proteins that facilitate protein translocation into the lumen of the endoplasmic reticulum, after which they are cleaved off. Specific regions of SPs influence the efficiency of protein translocation, and small changes in their primary structure can abolish protein secretion altogether. The lack of conserved motifs across SPs, sensitivity to mutations, and variability in the length of the peptides make SP prediction a challenging task that has been extensively pursued over the years. RESULTS: We introduce TSignal, a deep transformer-based neural network architecture that utilizes BERT language models and dot-product attention techniques. TSignal predicts the presence of SPs and the cleavage site between the SP and the translocated mature protein. We use common benchmark datasets and show competitive accuracy in terms of SP presence prediction and state-of-the-art accuracy in terms of cleavage site prediction for most of the SP types and organism groups. We further illustrate that our fully data-driven trained model identifies useful biological information on heterogeneous test sequences. AVAILABILITY AND IMPLEMENTATION: TSignal is available at: https://github.com/Dumitrescu-Alexandru/TSignal.


Asunto(s)
Aminoácidos , Señales de Clasificación de Proteína , Transporte de Proteínas , Benchmarking , Lenguaje
2.
Bioinformatics ; 39(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38070156

RESUMEN

MOTIVATION: T cells play an essential role in adaptive immune system to fight pathogens and cancer but may also give rise to autoimmune diseases. The recognition of a peptide-MHC (pMHC) complex by a T cell receptor (TCR) is required to elicit an immune response. Many machine learning models have been developed to predict the binding, but generalizing predictions to pMHCs outside the training data remains challenging. RESULTS: We have developed a new machine learning model that utilizes information about the TCR from both α and ß chains, epitope sequence, and MHC. Our method uses ProtBERT embeddings for the amino acid sequences of both chains and the epitope, as well as convolution and multi-head attention architectures. We show the importance of each input feature as well as the benefit of including epitopes with only a few TCRs to the training data. We evaluate our model on existing databases and show that it compares favorably against other state-of-the-art models. AVAILABILITY AND IMPLEMENTATION: https://github.com/DaniTheOrange/EPIC-TRACE.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Linfocitos T , Epítopos , Receptores de Antígenos de Linfocitos T/química , Secuencia de Aminoácidos , Linfocitos T/metabolismo , Unión Proteica , Epítopos de Linfocito T/metabolismo
3.
Bioinformatics ; 39(1)2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36477794

RESUMEN

MOTIVATION: T cells use T cell receptors (TCRs) to recognize small parts of antigens, called epitopes, presented by major histocompatibility complexes. Once an epitope is recognized, an immune response is initiated and T cell activation and proliferation by clonal expansion begin. Clonal populations of T cells with identical TCRs can remain in the body for years, thus forming immunological memory and potentially mappable immunological signatures, which could have implications in clinical applications including infectious diseases, autoimmunity and tumor immunology. RESULTS: We introduce TCRconv, a deep learning model for predicting recognition between TCRs and epitopes. TCRconv uses a deep protein language model and convolutions to extract contextualized motifs and provides state-of-the-art TCR-epitope prediction accuracy. Using TCR repertoires from COVID-19 patients, we demonstrate that TCRconv can provide insight into T cell dynamics and phenotypes during the disease. AVAILABILITY AND IMPLEMENTATION: TCRconv is available at https://github.com/emmijokinen/tcrconv. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
COVID-19 , Humanos , Epítopos , Receptores de Antígenos de Linfocitos T , Linfocitos T , Antígenos , Epítopos de Linfocito T
4.
PLoS Comput Biol ; 17(3): e1008814, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33764977

RESUMEN

Adaptive immune system uses T cell receptors (TCRs) to recognize pathogens and to consequently initiate immune responses. TCRs can be sequenced from individuals and methods analyzing the specificity of the TCRs can help us better understand individuals' immune status in different disorders. For this task, we have developed TCRGP, a novel Gaussian process method that predicts if TCRs recognize specified epitopes. TCRGP can utilize the amino acid sequences of the complementarity determining regions (CDRs) from TCRα and TCRß chains and learn which CDRs are important in recognizing different epitopes. Our comprehensive evaluation with epitope-specific TCR sequencing data shows that TCRGP achieves on average higher prediction accuracy in terms of AUROC score than existing state-of-the-art methods in epitope-specificity predictions. We also propose a novel analysis approach for combined single-cell RNA and TCRαß (scRNA+TCRαß) sequencing data by quantifying epitope-specific TCRs with TCRGP and identify HBV-epitope specific T cells and their transcriptomic states in hepatocellular carcinoma patients.


Asunto(s)
Biología Computacional/métodos , Epítopos de Linfocito T , Receptores de Antígenos de Linfocitos T , Análisis de Secuencia de Proteína/métodos , Secuencia de Aminoácidos , Regiones Determinantes de Complementariedad , Epítopos de Linfocito T/química , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/metabolismo , Humanos , Distribución Normal , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo
5.
Appl Microbiol Biotechnol ; 104(24): 10515-10529, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33147349

RESUMEN

In this work, deoxyribose-5-phosphate aldolase (Ec DERA, EC 4.1.2.4) from Escherichia coli was chosen as the protein engineering target for improving the substrate preference towards smaller, non-phosphorylated aldehyde donor substrates, in particular towards acetaldehyde. The initial broad set of mutations was directed to 24 amino acid positions in the active site or in the close vicinity, based on the 3D complex structure of the E. coli DERA wild-type aldolase. The specific activity of the DERA variants containing one to three amino acid mutations was characterised using three different substrates. A novel machine learning (ML) model utilising Gaussian processes and feature learning was applied for the 3rd mutagenesis round to predict new beneficial mutant combinations. This led to the most clear-cut (two- to threefold) improvement in acetaldehyde (C2) addition capability with the concomitant abolishment of the activity towards the natural donor molecule glyceraldehyde-3-phosphate (C3P) as well as the non-phosphorylated equivalent (C3). The Ec DERA variants were also tested on aldol reaction utilising formaldehyde (C1) as the donor. Ec DERA wild-type was shown to be able to carry out this reaction, and furthermore, some of the improved variants on acetaldehyde addition reaction turned out to have also improved activity on formaldehyde. KEY POINTS: • DERA aldolases are promiscuous enzymes. • Synthetic utility of DERA aldolase was improved by protein engineering approaches. • Machine learning methods aid the protein engineering of DERA.


Asunto(s)
Escherichia coli , Fructosa-Bifosfato Aldolasa , Aldehído-Liasas/genética , Aldehído-Liasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Aprendizaje Automático , Ingeniería de Proteínas , Especificidad por Sustrato
6.
Bioinformatics ; 34(13): i274-i283, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29949987

RESUMEN

Motivation: Proteins are commonly used by biochemical industry for numerous processes. Refining these proteins' properties via mutations causes stability effects as well. Accurate computational method to predict how mutations affect protein stability is necessary to facilitate efficient protein design. However, accuracy of predictive models is ultimately constrained by the limited availability of experimental data. Results: We have developed mGPfusion, a novel Gaussian process (GP) method for predicting protein's stability changes upon single and multiple mutations. This method complements the limited experimental data with large amounts of molecular simulation data. We introduce a Bayesian data fusion model that re-calibrates the experimental and in silico data sources and then learns a predictive GP model from the combined data. Our protein-specific model requires experimental data only regarding the protein of interest and performs well even with few experimental measurements. The mGPfusion models proteins by contact maps and infers the stability effects caused by mutations with a mixture of graph kernels. Our results show that mGPfusion outperforms state-of-the-art methods in predicting protein stability on a dataset of 15 different proteins and that incorporating molecular simulation data improves the model learning and prediction accuracy. Availability and implementation: Software implementation and datasets are available at github.com/emmijokinen/mgpfusion. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Algoritmos , Biología Computacional , Estabilidad Proteica , Proteínas , Programas Informáticos , Teorema de Bayes , Biología Computacional/métodos , Mutación/genética , Proteínas/química , Proteínas/genética
7.
J Clin Invest ; 133(6)2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36719749

RESUMEN

BackgroundRelatlimab plus nivolumab (anti-lymphocyte-activation gene 3 plus anti-programmed death 1 [anti-LAG-3+anti-PD-1]) has been approved by the FDA as a first-line therapy for stage III/IV melanoma, but its detailed effect on the immune system is unknown.MethodsWe evaluated blood samples from 40 immunotherapy-naive or prior immunotherapy-refractory patients with metastatic melanoma treated with anti-LAG-3+anti-PD-1 in a phase I trial using single-cell RNA and T cell receptor sequencing (scRNA+TCRαß-Seq) combined with other multiomics profiling.ResultsThe highest LAG3 expression was noted in NK cells, Tregs, and CD8+ T cells, and these cell populations underwent the most significant changes during the treatment. Adaptive NK cells were enriched in responders and underwent profound transcriptomic changes during the therapy, resulting in an active phenotype. LAG3+ Tregs expanded, but based on the transcriptome profile, became metabolically silent during the treatment. Last, higher baseline TCR clonality was observed in responding patients, and their expanding CD8+ T cell clones gained a more cytotoxic and NK-like phenotype.ConclusionAnti-LAG-3+anti-PD-1 therapy has profound effects on NK cells and Tregs in addition to CD8+ T cells.Trial registrationClinicalTrials.gov (NCT01968109)FundingCancer Foundation Finland, Sigrid Juselius Foundation, Signe and Ane Gyllenberg Foundation, Relander Foundation, State funding for university-level health research in Finland, a Helsinki Institute of Life Sciences Fellow grant, Academy of Finland (grant numbers 314442, 311081, 335432, and 335436), and an investigator-initiated research grant from BMS.


Asunto(s)
Antineoplásicos , Melanoma , Humanos , Receptor de Muerte Celular Programada 1 , Melanoma/tratamiento farmacológico , Melanoma/genética , Nivolumab/uso terapéutico , Antineoplásicos/farmacología , Linfocitos T CD8-positivos , Receptores de Antígenos de Linfocitos T/metabolismo , Melanoma Cutáneo Maligno
8.
Nat Commun ; 13(1): 5988, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36220826

RESUMEN

Analyzing antigen-specific T cell responses at scale has been challenging. Here, we analyze three types of T cell receptor (TCR) repertoire data (antigen-specific TCRs, TCR-repertoire, and single-cell RNA + TCRαß-sequencing data) from 515 patients with primary or metastatic melanoma and compare it to 783 healthy controls. Although melanoma-associated antigen (MAA) -specific TCRs are restricted to individuals, they share sequence similarities that allow us to build classifiers for predicting anti-MAA T cells. The frequency of anti-MAA T cells distinguishes melanoma patients from healthy and predicts metastatic recurrence from primary melanoma. Anti-MAA T cells have stem-like properties and frequent interactions with regulatory T cells and tumor cells via Galectin9-TIM3 and PVR-TIGIT -axes, respectively. In the responding patients, the number of expanded anti-MAA clones are higher after the anti-PD1(+anti-CTLA4) therapy and the exhaustion phenotype is rescued. Our systems immunology approach paves the way for understanding antigen-specific responses in human disorders.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Melanoma , Humanos , ARN , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T alfa-beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA