Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Adv Mater ; 36(24): e2305830, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38459924

RESUMEN

Despite the vital importance of monitoring the progression of nonalcoholic fatty liver disease (NAFLD) and its progressive form, nonalcoholic steatohepatitis (NASH), an efficient imaging modality that is readily available at hospitals is currently lacking. Here, a new magnetic-resonance-imaging (MRI)-based imaging modality is presented that allows for efficient and longitudinal monitoring of NAFLD and NASH progression. The imaging modality uses manganese-ion (Mn2+)-chelated bilirubin nanoparticles (Mn@BRNPs) as a reactive-oxygen-species (ROS)-responsive MRI imaging probe. Longitudinal T1-weighted MR imaging of NASH model mice is performed after injecting Mn@BRNPs intravenously. The MR signal enhancement in the liver relative to muscle gradually increases up to 8 weeks of NASH progression, but decreases significantly as NASH progresses to the cirrhosis-like stage at weeks 10 and 12. A new dual input pseudo-three-compartment model is developed to provide information on NASH stage with a single MRI scan. It is also demonstrated that the ROS-responsive Mn@BRNPs can be used to monitor the efficacy of potential anti-NASH drugs with conventional MRI. The findings suggest that the ROS-responsive Mn@BRNPs have the potential to serve as an efficient MRI contrast for monitoring NASH progression and its transition to the cirrhosis-like stage.


Asunto(s)
Bilirrubina , Progresión de la Enfermedad , Cirrosis Hepática , Imagen por Resonancia Magnética , Nanopartículas , Enfermedad del Hígado Graso no Alcohólico , Especies Reactivas de Oxígeno , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Animales , Imagen por Resonancia Magnética/métodos , Ratones , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Cirrosis Hepática/diagnóstico por imagen , Medios de Contraste/química , Manganeso/química , Humanos , Hígado/diagnóstico por imagen , Hígado/patología , Hígado/metabolismo , Modelos Animales de Enfermedad
2.
Biomaterials ; 310: 122633, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38810387

RESUMEN

Reactive oxygen species (ROS) that are overproduced in certain tumors can be considered an indicator of oxidative stress levels in the tissue. Here, we report a magnetic resonance imaging (MRI)-based probe capable of detecting ROS levels in the tumor microenvironment (TME) using ROS-responsive manganese ion (Mn2+)-chelated, biotinylated bilirubin nanoparticles (Mn@bt-BRNPs). These nanoparticles are disrupted in the presence of ROS, resulting in the release of free Mn2+, which induces T1-weighted MRI signal enhancement. Mn@BRNPs show more rapid and greater MRI signal enhancement in high ROS-producing A549 lung carcinoma cells compared with low ROS-producing DU145 prostate cancer cells. A pseudo three-compartment model devised for the ROS-reactive MRI probe enables mapping of the distribution and concentration of ROS within the tumor. Furthermore, doxorubicin-loaded, cancer-targeting ligand biotin-conjugated Dox/Mn@bt-BRNPs show considerable accumulation in A549 tumors and also effectively inhibit tumor growth without causing body weight loss, suggesting their usefulness as a new theranostic agent. Collectively, these findings suggest that Mn@bt-BRNPs could be used as an imaging probe capable of detecting ROS levels and monitoring drug delivery in the TME with potential applicability to other inflammatory diseases.


Asunto(s)
Doxorrubicina , Sistemas de Liberación de Medicamentos , Imagen por Resonancia Magnética , Especies Reactivas de Oxígeno , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Animales , Doxorrubicina/farmacología , Doxorrubicina/administración & dosificación , Doxorrubicina/uso terapéutico , Imagen por Resonancia Magnética/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Manganeso/química , Línea Celular Tumoral , Células A549 , Ratones , Ratones Desnudos , Masculino , Ratones Endogámicos BALB C
3.
Adv Mater ; 36(27): e2311283, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38489768

RESUMEN

Organ-selective drug delivery is expected to maximize the efficacy of various therapeutic modalities while minimizing their systemic toxicity. Lipid nanoparticles and polymersomes can direct the organ-selective delivery of mRNAs or gene editing machineries, but their delivery is limited to mostly liver, spleen, and lung. A platform that enables delivery to these and other target organs is urgently needed. Here, a library of glycocalyx-mimicking nanoparticles (GlyNPs) comprising five randomly combined sugar moieties is generated, and direct in vivo library screening is used to identify GlyNPs with preferential biodistribution in liver, spleen, lung, kidneys, heart, and brain. Each organ-targeting GlyNP hit show cellular tropism within the organ. Liver, kidney, and spleen-targeting GlyNP hits equipped with therapeutics effectively can alleviate the symptoms of acetaminophen-induced liver injury, cisplatin-induced kidney injury, and immune thrombocytopenia in mice, respectively. Furthermore, the differential organ targeting of GlyNP hits is influenced not by the protein corona but by the sugar moieties displayed on their surface. It is envisioned that the GlyNP-based platform may enable the organ- and cell-targeted delivery of therapeutic cargoes.


Asunto(s)
Glicocálix , Nanopartículas , Glicocálix/metabolismo , Glicocálix/química , Animales , Nanopartículas/química , Ratones , Distribución Tisular , Humanos , Especificidad de Órganos , Sistemas de Liberación de Medicamentos , Acetaminofén/química , Cisplatino/química , Cisplatino/farmacología , Materiales Biomiméticos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA