Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Biomed Inform ; 117: 103733, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33737205

RESUMEN

The context of medical conditions is an important feature to consider when processing clinical narratives. NegEx and its extension ConText became the most well-known rule-based systems that allow determining whether a medical condition is negated, historical or experienced by someone other than the patient in English clinical text. In this paper, we present a French adaptation and enrichment of FastContext which is the most recent, n-trie engine-based implementation of the ConText algorithm. We compiled an extensive list of French lexical cues by automatic and manual translation and enrichment. To evaluate French FastContext, we manually annotated the context of medical conditions present in two types of clinical narratives: (i)death certificates and (ii)electronic health records. Results show good performance across different context values on both types of clinical notes (on average 0.93 and 0.86 F1, respectively). Furthermore, French FastContext outperforms previously reported French systems for negation detection when compared on the same datasets and it is the first implementation of contextual temporality and experiencer identification reported for French. Finally, French FastContext has been implemented within the SIFR Annotator: a publicly accessible Web service to annotate French biomedical text data (http://bioportal.lirmm.fr/annotator). To our knowledge, this is the first implementation of a Web-based ConText-like system in a publicly accessible platform allowing non-natural-language-processing experts to both annotate and contextualize medical conditions in clinical notes.


Asunto(s)
Lenguaje , Procesamiento de Lenguaje Natural , Algoritmos , Registros Electrónicos de Salud , Humanos
2.
BMC Bioinformatics ; 20(Suppl 4): 139, 2019 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-30999867

RESUMEN

BACKGROUND: Pharmacogenomics (PGx) studies how genomic variations impact variations in drug response phenotypes. Knowledge in pharmacogenomics is typically composed of units that have the form of ternary relationships gene variant - drug - adverse event. Such a relationship states that an adverse event may occur for patients having the specified gene variant and being exposed to the specified drug. State-of-the-art knowledge in PGx is mainly available in reference databases such as PharmGKB and reported in scientific biomedical literature. But, PGx knowledge can also be discovered from clinical data, such as Electronic Health Records (EHRs), and in this case, may either correspond to new knowledge or confirm state-of-the-art knowledge that lacks "clinical counterpart" or validation. For this reason, there is a need for automatic comparison of knowledge units from distinct sources. RESULTS: In this article, we propose an approach, based on Semantic Web technologies, to represent and compare PGx knowledge units. To this end, we developed PGxO, a simple ontology that represents PGx knowledge units and their components. Combined with PROV-O, an ontology developed by the W3C to represent provenance information, PGxO enables encoding and associating provenance information to PGx relationships. Additionally, we introduce a set of rules to reconcile PGx knowledge, i.e. to identify when two relationships, potentially expressed using different vocabularies and levels of granularity, refer to the same, or to different knowledge units. We evaluated our ontology and rules by populating PGxO with knowledge units extracted from PharmGKB (2701), the literature (65,720) and from discoveries reported in EHR analysis studies (only 10, manually extracted); and by testing their similarity. We called PGxLOD (PGx Linked Open Data) the resulting knowledge base that represents and reconciles knowledge units of those various origins. CONCLUSIONS: The proposed ontology and reconciliation rules constitute a first step toward a more complete framework for knowledge comparison in PGx. In this direction, the experimental instantiation of PGxO, named PGxLOD, illustrates the ability and difficulties of reconciling various existing knowledge sources.


Asunto(s)
Bases del Conocimiento , Farmacogenética , Minería de Datos , Bases de Datos Factuales , Registros Electrónicos de Salud , Humanos , Bancos de Tejidos
3.
Bioinformatics ; 34(11): 1962-1965, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29846492

RESUMEN

Summary: Second use of clinical data commonly involves annotating biomedical text with terminologies and ontologies. The National Center for Biomedical Ontology Annotator is a frequently used annotation service, originally designed for biomedical data, but not very suitable for clinical text annotation. In order to add new functionalities to the NCBO Annotator without hosting or modifying the original Web service, we have designed a proxy architecture that enables seamless extensions by pre-processing of the input text and parameters, and post processing of the annotations. We have then implemented enhanced functionalities for annotating and indexing free text such as: scoring, detection of context (negation, experiencer, temporality), new output formats and coarse-grained concept recognition (with UMLS Semantic Groups). In this paper, we present the NCBO Annotator+, a Web service which incorporates these new functionalities as well as a small set of evaluation results for concept recognition and clinical context detection on two standard evaluation tasks (Clef eHealth 2017, SemEval 2014). Availability and implementation: The Annotator+ has been successfully integrated into the SIFR BioPortal platform-an implementation of NCBO BioPortal for French biomedical terminologies and ontologies-to annotate English text. A Web user interface is available for testing and ontology selection (http://bioportal.lirmm.fr/ncbo_annotatorplus); however the Annotator+ is meant to be used through the Web service application programming interface (http://services.bioportal.lirmm.fr/ncbo_annotatorplus). The code is openly available, and we also provide a Docker packaging to enable easy local deployment to process sensitive (e.g. clinical) data in-house (https://github.com/sifrproject). Contact: andon.tchechmedjiev@lirmm.fr. Supplementary information: Supplementary data are available at Bioinformatics online.


Asunto(s)
Ontologías Biológicas , Almacenamiento y Recuperación de la Información/métodos , Programas Informáticos , Humanos
4.
BMC Bioinformatics ; 19(1): 405, 2018 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-30400805

RESUMEN

BACKGROUND: Despite a wide adoption of English in science, a significant amount of biomedical data are produced in other languages, such as French. Yet a majority of natural language processing or semantic tools as well as domain terminologies or ontologies are only available in English, and cannot be readily applied to other languages, due to fundamental linguistic differences. However, semantic resources are required to design semantic indexes and transform biomedical (text)data into knowledge for better information mining and retrieval. RESULTS: We present the SIFR Annotator ( http://bioportal.lirmm.fr/annotator ), a publicly accessible ontology-based annotation web service to process biomedical text data in French. The service, developed during the Semantic Indexing of French Biomedical Data Resources (2013-2019) project is included in the SIFR BioPortal, an open platform to host French biomedical ontologies and terminologies based on the technology developed by the US National Center for Biomedical Ontology. The portal facilitates use and fostering of ontologies by offering a set of services -search, mappings, metadata, versioning, visualization, recommendation- including for annotation purposes. We introduce the adaptations and improvements made in applying the technology to French as well as a number of language independent additional features -implemented by means of a proxy architecture- in particular annotation scoring and clinical context detection. We evaluate the performance of the SIFR Annotator on different biomedical data, using available French corpora -Quaero (titles from French MEDLINE abstracts and EMEA drug labels) and CépiDC (ICD-10 coding of death certificates)- and discuss our results with respect to the CLEF eHealth information extraction tasks. CONCLUSIONS: We show the web service performs comparably to other knowledge-based annotation approaches in recognizing entities in biomedical text and reach state-of-the-art levels in clinical context detection (negation, experiencer, temporality). Additionally, the SIFR Annotator is the first openly web accessible tool to annotate and contextualize French biomedical text with ontology concepts leveraging a dictionary currently made of 28 terminologies and ontologies and 333 K concepts. The code is openly available, and we also provide a Docker packaging for easy local deployment to process sensitive (e.g., clinical) data in-house ( https://github.com/sifrproject ).


Asunto(s)
Indización y Redacción de Resúmenes , Ontologías Biológicas , Análisis de Datos , Registros de Salud Personal , Informática Médica , Procesamiento de Lenguaje Natural , Semántica , Francia , Perfilación de la Expresión Génica , Humanos , Almacenamiento y Recuperación de la Información , MEDLINE
5.
Sci Data ; 11(1): 479, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730252

RESUMEN

This work presents a maturity model for assessing catalogues of semantic artefacts, one of the keystones that permit semantic interoperability of systems. We defined the dimensions and related features to include in the maturity model by analysing the current literature and existing catalogues of semantic artefacts provided by experts. In addition, we assessed 26 different catalogues to demonstrate the effectiveness of the maturity model, which includes 12 different dimensions (Metadata, Openness, Quality, Availability, Statistics, PID, Governance, Community, Sustainability, Technology, Transparency, and Assessment) and 43 related features (or sub-criteria) associated with these dimensions. Such a maturity model is one of the first attempts to provide recommendations for governance and processes for preserving and maintaining semantic artefacts and helps assess/address interoperability challenges.

6.
Front Artif Intell ; 6: 1187090, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37908741

RESUMEN

Vegetable crop farmers diversify their production by growing a range of crops during the season on the same plot. Crop diversification and rotation enables farmers to increase their income and crop yields while enhancing their farm sustainability against climatic events and pest attacks. Farmers must plan their agricultural work per year and over successive years. Planning decisions are made on the basis of their experience regarding previous plans. For the purpose of assisting farmers in planning decisions and monitoring, we developed the Crop Planning and Production Process Ontology (C3PO), i.e., a representation of agricultural knowledge and data for diversified crop production. C3PO is composed of eight modules to capture all crop production dimensions and complexity for representing farming practices and constraints. It encodes agricultural processes and farm plot organization and captures common agricultural knowledge. C3PO introduces a representation of technical itineraries, i.e., sequences of technical farming tasks to grow vegetables, from soil identification and seed selection to harvest and storage. C3PO is the backbone of a knowledge graph which aggregates data from heterogeneous related semantic resources, e.g., organism taxonomies, chemicals, reference crop listings, or development stages. C3PO and its knowledge graph are used by the Elzeard enterprise to develop knowledge-based decision support systems for farmers. This article describes how we built C3PO and its knowledge graph-which are both publicly available-and briefly outlines their applications.

7.
Bioinformatics ; 26(14): 1800-1, 2010 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-20505005

RESUMEN

SUMMARY: The Unstructured Information Management Architecture (UIMA) framework and web services are emerging as useful tools for integrating biomedical text mining tools. This note describes our work, which wraps the National Center for Biomedical Ontology (NCBO) Annotator-an ontology-based annotation service-to make it available as a component in UIMA workflows. AVAILABILITY: This wrapper is freely available on the web at http://bionlp-uima.sourceforge.net/ as part of the UIMA tools distribution from the Center for Computational Pharmacology (CCP) at the University of Colorado School of Medicine. It has been implemented in Java for support on Mac OS X, Linux and MS Windows.


Asunto(s)
Minería de Datos/métodos , Programas Informáticos , Bases de Datos Factuales , Interfaz Usuario-Computador
8.
Nucleic Acids Res ; 37(Web Server issue): W170-3, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19483092

RESUMEN

Biomedical ontologies provide essential domain knowledge to drive data integration, information retrieval, data annotation, natural-language processing and decision support. BioPortal (http://bioportal.bioontology.org) is an open repository of biomedical ontologies that provides access via Web services and Web browsers to ontologies developed in OWL, RDF, OBO format and Protégé frames. BioPortal functionality includes the ability to browse, search and visualize ontologies. The Web interface also facilitates community-based participation in the evaluation and evolution of ontology content by providing features to add notes to ontology terms, mappings between terms and ontology reviews based on criteria such as usability, domain coverage, quality of content, and documentation and support. BioPortal also enables integrated search of biomedical data resources such as the Gene Expression Omnibus (GEO), ClinicalTrials.gov, and ArrayExpress, through the annotation and indexing of these resources with ontologies in BioPortal. Thus, BioPortal not only provides investigators, clinicians, and developers 'one-stop shopping' to programmatically access biomedical ontologies, but also provides support to integrate data from a variety of biomedical resources.


Asunto(s)
Programas Informáticos , Vocabulario Controlado , Indización y Redacción de Resúmenes , Investigación Biomédica , Internet , Procesamiento de Lenguaje Natural , Integración de Sistemas , Interfaz Usuario-Computador
9.
Web Semant ; 9(3): 316-324, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21918645

RESUMEN

The volume of publicly available data in biomedicine is constantly increasing. However, these data are stored in different formats and on different platforms. Integrating these data will enable us to facilitate the pace of medical discoveries by providing scientists with a unified view of this diverse information. Under the auspices of the National Center for Biomedical Ontology (NCBO), we have developed the Resource Index-a growing, large-scale ontology-based index of more than twenty heterogeneous biomedical resources. The resources come from a variety of repositories maintained by organizations from around the world. We use a set of over 200 publicly available ontologies contributed by researchers in various domains to annotate the elements in these resources. We use the semantics that the ontologies encode, such as different properties of classes, the class hierarchies, and the mappings between ontologies, in order to improve the search experience for the Resource Index user. Our user interface enables scientists to search the multiple resources quickly and efficiently using domain terms, without even being aware that there is semantics "under the hood."

10.
BMC Bioinformatics ; 10 Suppl 9: S14, 2009 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-19761568

RESUMEN

The National Center for Biomedical Ontology (NCBO) is developing a system for automated, ontology-based access to online biomedical resources (Shah NH, et al.: Ontology-driven indexing of public datasets for translational bioinformatics. BMC Bioinformatics 2009, 10(Suppl 2):S1). The system's indexing workflow processes the text metadata of diverse resources such as datasets from GEO and ArrayExpress to annotate and index them with concepts from appropriate ontologies. This indexing requires the use of a concept-recognition tool to identify ontology concepts in the resource's textual metadata. In this paper, we present a comparison of two concept recognizers - NLM's MetaMap and the University of Michigan's Mgrep. We utilize a number of data sources and dictionaries to evaluate the concept recognizers in terms of precision, recall, speed of execution, scalability and customizability. Our evaluations demonstrate that Mgrep has a clear edge over MetaMap for large-scale service oriented applications. Based on our analysis we also suggest areas of potential improvements for Mgrep. We have subsequently used Mgrep to build the Open Biomedical Annotator service. The Annotator service has access to a large dictionary of biomedical terms derived from the United Medical Language System (UMLS) and NCBO ontologies. The Annotator also leverages the hierarchical structure of the ontologies and their mappings to expand annotations. The Annotator service is available to the community as a REST Web service for creating ontology-based annotations of their data.


Asunto(s)
Biología Computacional/métodos , Indización y Redacción de Resúmenes , Bases de Datos Factuales , Perfilación de la Expresión Génica , Almacenamiento y Recuperación de la Información , Informática Médica , Vocabulario Controlado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA