Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(2): 530-543.e24, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220458

RESUMEN

The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.


Asunto(s)
Nefritis Intersticial/virología , Parvovirus/aislamiento & purificación , Parvovirus/patogenicidad , Animales , Australia , Progresión de la Enfermedad , Femenino , Fibrosis/patología , Fibrosis/virología , Humanos , Riñón/metabolismo , Riñón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Nefritis Intersticial/fisiopatología , América del Norte , Infecciones por Parvoviridae/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-36939203

RESUMEN

Ferroportin (Fpn)-expressed at the plasma membrane of macrophages, enterocytes, and hepatocytes-mediates the transfer of cellular iron into the blood plasma. Under the control of the iron-regulatory hormone hepcidin, Fpn serves a critical role in systemic iron homeostasis. Whereas we have previously characterized human Fpn, a great deal of research in iron homeostasis and disorders utilizes mouse models. By way of example, the flatiron mouse, a model of classical ferroportin disease, bears the mutation H32R in Fpn and is characterized by systemic iron deficiency and macrophage iron retention. The flatiron mouse also appears to exhibit a manganese phenotype, raising the possibility that mouse Fpn serves a role in manganese metabolism. At odds with this observation, we have found that human Fpn does not transport manganese, so we considered the possibility that a species difference could explain this discrepancy. We tested the hypothesis that mouse but not human Fpn can transport manganese and performed a comparative analysis of mouse and human Fpn. We examined the functional properties of human Fpn, mouse Fpn, and mutant mouse Fpn by using radiotracer assays in RNA-injected Xenopus oocytes. We found that neither mouse nor human Fpn transports manganese. Mouse and human Fpn share identical properties with respect to substrate profile, calcium dependence, optimal pH, and hepcidin sensitivity. We have also demonstrated that Fpn is not an ATPase pump. Our findings validate the use of mouse models of ferroportin function in iron homeostasis and disease.

3.
Biochem Soc Trans ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38115725

RESUMEN

Iron is a vital trace element for almost all organisms, and maintaining iron homeostasis is critical for human health. In mammals, the only known gatekeeper between intestinally absorbed iron and circulatory blood plasma is the membrane transporter ferroportin (Fpn). As such, dysfunction of Fpn or its regulation is a key driver of iron-related pathophysiology. This review focuses on discussing recent insights from high-resolution structural studies of the Fpn protein family. While these studies have unveiled crucial details of Fpn regulation and structural architecture, the associated functional studies have also at times provided conflicting data provoking more questions than answers. Here, we summarize key findings and illuminate important remaining questions and contradictions.

4.
Blood ; 131(8): 899-910, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29237594

RESUMEN

Nonclassical ferroportin disease (FD) is a form of hereditary hemochromatosis caused by mutations in the iron transporter ferroportin (Fpn), resulting in parenchymal iron overload. Fpn is regulated by the hormone hepcidin, which induces Fpn endocytosis and cellular iron retention. We characterized 11 clinically relevant and 5 nonclinical Fpn mutations using stably transfected, inducible isogenic cell lines. All clinical mutants were functionally resistant to hepcidin as a consequence of either impaired hepcidin binding or impaired hepcidin-dependent ubiquitination despite intact hepcidin binding. Mapping the residues onto 2 computational models of the human Fpn structure indicated that (1) mutations that caused ubiquitination-resistance were positioned at helix-helix interfaces, likely preventing the hepcidin-induced conformational change, (2) hepcidin binding occurred within the central cavity of Fpn, (3) hepcidin interacted with up to 4 helices, and (4) hepcidin binding should occlude Fpn and interfere with iron export independently of endocytosis. We experimentally confirmed hepcidin-mediated occlusion of Fpn in the absence of endocytosis in multiple cellular systems: HEK293 cells expressing an endocytosis-defective Fpn mutant (K8R), Xenopus oocytes expressing wild-type or K8R Fpn, and mature human red blood cells. We conclude that nonclassical FD is caused by Fpn mutations that decrease hepcidin binding or hinder conformational changes required for ubiquitination and endocytosis of Fpn. The newly documented ability of hepcidin and its agonists to occlude iron transport may facilitate the development of broadly effective treatments for hereditary iron overload disorders.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Resistencia a Medicamentos , Hepcidinas/metabolismo , Hierro/metabolismo , Animales , Sitios de Unión , Proteínas de Transporte de Catión/genética , Células Cultivadas , Simulación por Computador , Endocitosis , Células HEK293 , Hepcidinas/agonistas , Humanos , Ratones , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Mutación , Oocitos/citología , Oocitos/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Relación Estructura-Actividad , Ubiquitinación , Xenopus laevis
5.
Biophys J ; 107(12): L45-L48, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25517170

RESUMEN

The release of GDP from GTPases signals the initiation of a GTPase cycle, where the association of GTP triggers conformational changes promoting binding of downstream effector molecules. Studies have implicated the nucleotide-binding G5 loop to be involved in the GDP release mechanism. For example, biophysical studies on both the eukaryotic Gα proteins and the GTPase domain (NFeoB) of prokaryotic FeoB proteins have revealed conformational changes in the G5 loop that accompany nucleotide binding and release. However, it is unclear whether this conformational change in the G5 loop is a prerequisite for GDP release, or, alternatively, the movement is a consequence of release. To gain additional insight into the sequence of events leading to GDP release, we have created a chimeric protein comprised of Escherichia coli NFeoB and the G5 loop from the human Giα1 protein. The protein chimera retains GTPase activity at a similar level to wild-type NFeoB, and structural analyses of the nucleotide-free and GDP-bound proteins show that the G5 loop adopts conformations analogous to that of the human nucleotide-bound Giα1 protein in both states. Interestingly, isothermal titration calorimetry and stopped-flow kinetic analyses reveal uncoupled nucleotide affinity and release rates, supporting a model where G5 loop movement promotes nucleotide release.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/química , Guanosina Difosfato/metabolismo , Secuencia de Aminoácidos , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Guanosina Difosfato/química , Humanos , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
6.
Int J Cancer ; 135(5): 1060-71, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24531984

RESUMEN

Amino acids, especially leucine and glutamine, are important for tumor cell growth, survival and metabolism. A range of different transporters deliver each specific amino acid into cells, some of which are increased in cancer. These amino acids consequently activate the mTORC1 pathway and drive cell cycle progression. The leucine transporter LAT1/4F2hc heterodimer assembles as part of a large complex with the glutamine transporter ASCT2 to transport amino acids. In this study, we show that the expression of LAT1 and ASCT2 is significantly increased in human melanoma samples and is present in both BRAF(WT) (C8161 and WM852) and BRAF(V600E) mutant (1205Lu and 451Lu) melanoma cell lines. While inhibition of LAT1 by BCH did not suppress melanoma cell growth, the ASCT2 inhibitor BenSer significantly reduced both leucine and glutamine transport in melanoma cells, leading to inhibition of mTORC1 signaling. Cell proliferation and cell cycle progression were significantly reduced in the presence of BenSer in melanoma cells in 2D and 3D cell culture. This included reduced expression of the cell cycle regulators CDK1 and UBE2C. The importance of ASCT2 expression in melanoma was confirmed by shRNA knockdown, which inhibited glutamine uptake, mTORC1 signaling and cell proliferation. Taken together, our study demonstrates that ASCT2-mediated glutamine transport is a potential therapeutic target for both BRAF(WT) and BRAF(V600E) melanoma.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/biosíntesis , Glutamina/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/biosíntesis , Melanoma/patología , Complejos Multiproteicos/antagonistas & inhibidores , Neoplasias Cutáneas/patología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos ASC/genética , Aminoácidos Cíclicos/farmacología , Compuestos de Bencilo/farmacología , Transporte Biológico , Proteína Quinasa CDC2/biosíntesis , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Humanos , Leucina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Melanoma/metabolismo , Antígenos de Histocompatibilidad Menor , Complejos Multiproteicos/genética , Proteínas Proto-Oncogénicas B-raf/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Serina/análogos & derivados , Serina/farmacología , Transducción de Señal , Neoplasias Cutáneas/metabolismo , Esferoides Celulares , Serina-Treonina Quinasas TOR/genética , Células Tumorales Cultivadas , Enzimas Ubiquitina-Conjugadoras/biosíntesis
7.
EMBO J ; 28(17): 2677-85, 2009 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-19629046

RESUMEN

G proteins are key molecular switches in the regulation of membrane protein function and signal transduction. The prokaryotic membrane protein FeoB is involved in G protein coupled Fe(2+) transport, and is unique in that the G protein is directly tethered to the membrane domain. Here, we report the structure of the soluble domain of FeoB, including the G protein domain, and its assembly into an unexpected trimer. Comparisons between nucleotide free and liganded structures reveal the closed and open state of a central cytoplasmic pore, respectively. In addition, these data provide the first observation of a conformational switch in the nucleotide-binding G5 motif, defining the structural basis for GDP release. From these results, structural parallels are drawn to eukaryotic G protein coupled membrane processes.


Asunto(s)
Proteínas de Transporte de Catión/química , Proteínas de Escherichia coli/química , Proteínas de Unión al GTP/química , Guanosina Difosfato/metabolismo , Hierro/metabolismo , Sitios de Unión , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Unión al GTP/metabolismo , Guanosina Difosfato/química , Modelos Moleculares , Conformación Proteica , Transducción de Señal
8.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 69(Pt 4): 399-404, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23545645

RESUMEN

FeoB is a transmembrane protein involved in ferrous iron uptake in prokaryotic organisms. FeoB comprises a cytoplasmic soluble domain termed NFeoB and a C-terminal polytopic transmembrane domain. Recent structures of NFeoB have revealed two structural subdomains: a canonical GTPase domain and a five-helix helical domain. The GTPase domain hydrolyses GTP to GDP through a well characterized mechanism, a process which is required for Fe(2+) transport. In contrast, the precise role of the helical domain has not yet been fully determined. Here, the structure of the cytoplasmic domain of FeoB from Gallionella capsiferriformans is reported. Unlike recent structures of NFeoB, the G. capsiferriformans NFeoB structure is highly unusual in that it does not contain a helical domain. The crystal structures of both apo and GDP-bound protein forms a domain-swapped dimer.


Asunto(s)
GTP Fosfohidrolasas/química , Gallionellaceae/enzimología , Proteínas de la Membrana/química , Multimerización de Proteína , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína
9.
J Biol Chem ; 285(19): 14594-602, 2010 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-20220129

RESUMEN

FeoB is a prokaryotic membrane protein responsible for the import of ferrous iron (Fe(2+)). A defining feature of FeoB is that it includes an N-terminal 30-kDa soluble domain with GTPase activity, which is required for iron transport. However, the low intrinsic GTP hydrolysis rate of this domain appears to be too slow for FeoB either to function as a channel or to possess an active Fe(2+) membrane transport mechanism. Here, we present crystal structures of the soluble domain of FeoB from Streptococcus thermophilus in complex with GDP and with the GTP analogue derivative 2'-(or -3')-O-(N-methylanthraniloyl)-beta,gamma-imidoguanosine 5'-triphosphate (mant-GMPPNP). Unlike recent structures of the G protein domain, the mant-GMPPNP-bound structure shows clearly resolved, active conformations of the critical Switch motifs. Importantly, biochemical analyses demonstrate that the GTPase activity of FeoB is activated by K(+), which leads to a 20-fold acceleration in its hydrolysis rate. Analysis of the structure identified a conserved asparagine residue likely to be involved in K(+) coordination, and mutation of this residue abolished K(+)-dependent activation. We suggest that this, together with a second asparagine residue that we show is critical for the structure of the Switch I loop, allows the prediction of K(+)-dependent activation in G proteins. In addition, the accelerated hydrolysis rate opens up the possibility that FeoB might indeed function as an active transporter.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Hierro/metabolismo , Potasio/farmacología , Streptococcus thermophilus/metabolismo , Proteínas de Transporte de Catión/química , Cristalografía por Rayos X , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Conformación Proteica , Estructura Terciaria de Proteína
10.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 11): 973-80, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22101824

RESUMEN

The acquisition of ferrous iron in prokaryotes is achieved by the G-protein-coupled membrane protein FeoB. This protein possesses a large C-terminal membrane-spanning domain preceded by two soluble cytoplasmic domains that are together termed 'NFeoB'. The first of these soluble domains is a GTPase domain (G-domain), which is then followed by an entirely α-helical domain. GTP hydrolysis by the G-domain is essential for iron uptake by FeoB, and various NFeoB mutant proteins from Streptococcus thermophilus have been constructed. These mutations investigate the role of conserved amino acids from the protein's critical Switch regions. Five crystal structures of these mutant proteins have been determined. The structures of E66A and E67A mutant proteins were solved in complex with nonhydrolyzable GTP analogues, the structures of T35A and E67A mutant proteins were solved in complex with GDP and finally the structure of the T35S mutant was crystallized without bound nucleotide. As an ensemble, the structures illustrate how small nucleotide-dependent rearrangements at the active site are converted into large rigid-body reorientations of the helical domain in response to GTP binding and hydrolysis. This provides the first evidence of nucleotide-dependent helical domain movement in NFeoB proteins, suggesting a mechanism by which the G-protein domain could structurally communicate with the membrane domain and mediate iron uptake.


Asunto(s)
Proteínas Bacterianas/metabolismo , Guanosina Trifosfato/química , Hidrólisis , Hierro/metabolismo , Streptococcus thermophilus/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia Conservada/genética , Cristalización , Proteínas de Unión al GTP/genética , Guanosina Trifosfato/metabolismo , Mutagénesis Sitio-Dirigida , Mutación/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína/genética , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Streptococcus thermophilus/química
11.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1511-5, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139154

RESUMEN

The uptake of ferrous iron in prokaryotes is mediated by the G-protein-coupled membrane protein FeoB. The protein contains two N-terminal soluble domains that are together called `NFeoB'. One of these is a G-protein domain, and GTP hydrolysis by this domain is essential for iron transport. The GTPase activity of NFeoB is accelerated in the presence of potassium ions, which bind at a site adjacent to the nucleotide. One of the ligands at the potassium-binding site is a conserved asparagine residue, which corresponds to Asn11 in Streptococcus thermophilus NFeoB. The structure of an N11A S. thermophilus NFeoB mutant has been determined and refined to a resolution of 1.85 Å; the crystals contained a mixture of mant-GDP-bound and mant-GMP-bound protein. The structure demonstrates how the use of a derivatized nucleotide in cocrystallization experiments can facilitate the growth of diffraction-quality crystals.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Transporte de Catión/química , Mutación , Streptococcus thermophilus/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas de Transporte de Catión/genética , Cristalografía por Rayos X , Modelos Moleculares , Estructura Terciaria de Proteína
12.
FEBS Open Bio ; 11(1): 26-34, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33190422

RESUMEN

Ferroportin (Fpn) is an essential mammalian iron transporter that is negatively regulated by the hormone hepcidin. Our current molecular understanding of Fpn-mediated iron efflux and regulation is limited due to a lack of biochemical, biophysical and high-resolution structural studies. A critical step towards understanding the transport mechanism of Fpn is to obtain sufficient quantities of pure and stable protein for downstream studies. As such, we detail here an expression and purification protocol for mouse Fpn yielding milligram quantities of pure protein. We have generated deletion constructs exhibiting enhanced thermal stability and which retained iron-transport activity and hepcidin responsiveness, providing a platform for further biophysical studies of Fpn.


Asunto(s)
Proteínas de Transporte de Catión/aislamiento & purificación , Animales , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Hepcidinas/metabolismo , Calor/efectos adversos , Ratones , Estabilidad Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
13.
Nat Commun ; 9(1): 3075, 2018 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-30082682

RESUMEN

Ferroportin (Fpn)-the only known cellular iron exporter-transports dietary and recycled iron into the blood plasma, and transfers iron across the placenta. Despite its central role in iron metabolism, our molecular understanding of Fpn-mediated iron efflux remains incomplete. Here, we report that Ca2+ is required for human Fpn transport activity. Whereas iron efflux is stimulated by extracellular Ca2+ in the physiological range, Ca2+ is not transported. We determine the crystal structure of a Ca2+-bound BbFpn, a prokaryotic orthologue, and find that Ca2+ is a cofactor that facilitates a conformational change critical to the transport cycle. We also identify a substrate pocket accommodating a divalent transition metal complexed with a chelator. These findings support a model of iron export by Fpn and suggest a link between plasma calcium and iron homeostasis.


Asunto(s)
Calcio/química , Proteínas de Transporte de Catión/química , Animales , Sitios de Unión , Quelantes/química , Cristalografía por Rayos X , Células HEK293 , Homeostasis , Humanos , Hierro/química , Metales/química , Mutagénesis , Oocitos/metabolismo , Conformación Proteica , Xenopus
14.
Curr Opin Struct Biol ; 13(4): 418-23, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12948771

RESUMEN

Several structures belonging to the large bis-molybdopterin guanine dinucleotide enzyme family have been published during the past four years. These include the structures of three formate dehydrogenases containing intrinsic selenocysteine residues - two soluble enzymes and one integral membrane protein. Together these have given detailed structural and mechanistic information about this family of enzymes.


Asunto(s)
Formiato Deshidrogenasas/fisiología , Secuencia de Aminoácidos , Transporte de Electrón , Escherichia coli/enzimología , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína
15.
PLoS One ; 12(9): e0184366, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28880952

RESUMEN

Hephaestin is a large membrane-anchored multicopper ferroxidase involved in mammalian iron metabolism. Newly absorbed dietary iron is exported across the enterocyte basolateral membrane by the ferrous iron transporter ferroportin, but hephaestin increases the efficiency of this process by oxidizing the transported iron to its ferric form and promoting its release from ferroportin. Deletion or mutation of the hephaestin gene leads to systemic anemia with iron accumulation in the intestinal epithelium. The crystal structure of human ceruloplasmin, another multicopper ferroxidase with 50% sequence identity to hephaestin, has provided a framework for comparative analysis and modelling. However, detailed structural information for hephaestin is still absent, leaving questions relating to metal coordination and binding sites unanswered. To obtain structural information for hephaestin, a reliable protocol for large-scale purification is required. Here, we present an expression and purification protocol of soluble mouse hephaestin, yielding milligram amounts of enzymatically active, purified protein using the baculovirus/insect cell system.


Asunto(s)
Proteínas de la Membrana/metabolismo , Animales , Sitios de Unión , Western Blotting , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Línea Celular , Ceruloplasmina/metabolismo , Humanos , Cinética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Estructura Secundaria de Proteína
16.
Mol Biol Cell ; 28(8): 1066-1078, 2017 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-28251925

RESUMEN

RhoGTPases are important regulators of the cell cytoskeleton, controlling cell shape, migration and proliferation. Previously we showed that ARHGAP18 in endothelial cells is important in cell junctions. Here we show, using structured illumination microscopy (SIM), ground-state depletion (GSD), and total internal reflection fluorescence microscopy (TIRF) that a proportion of ARHGAP18 localizes to microtubules in endothelial cells, as well as in nonendothelial cells, an association confirmed biochemically. In endothelial cells, some ARHGAP18 puncta also colocalized to Weibel-Palade bodies on the microtubules. Depletion of ARHGAP18 by small interfering RNA or analysis of endothelial cells isolated from ARHGAP18-knockout mice showed microtubule destabilization, as evidenced by altered morphology and decreased acetylated α-tubulin and glu-tubulin. The destabilization was rescued by inhibition of ROCK and histone deacetylase 6 but not by a GAP-mutant form of ARHGAP18. Depletion of ARHGAP18 resulted in a failure to secrete endothelin-1 and a reduction in neutrophil transmigration, both known to be microtubule dependent. Thrombin, a critical regulator of the Rho-mediated barrier function of endothelial cells through microtubule destabilization, enhanced the plasma membrane-bound fraction of ARHGAP18. Thus, in endothelial cells, ARHGAP18 may act as a significant regulator of vascular homeostasis.


Asunto(s)
Células Endoteliales/fisiología , Proteínas Activadoras de GTPasa/fisiología , Microtúbulos/fisiología , Acetilación , Actinas/metabolismo , Animales , Movimiento Celular/fisiología , Células Cultivadas , Citoesqueleto/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Células HeLa , Histona Desacetilasa 6 , Histona Desacetilasas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Uniones Intercelulares/metabolismo , Ratones , Ratones Noqueados , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Quinasas Asociadas a rho/metabolismo
17.
Structure ; 12(1): 95-104, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14725769

RESUMEN

The structure of the catalytic and electron-transfer subunits (NarGH) of the integral membrane protein, respiratory nitrate reductase (Nar) has been determined to 2.0 A resolution revealing the molecular architecture of this Mo-bisMGD (molybdopterin-guanine-dinucleotide) containing enzyme which includes a previously undetected FeS cluster. Nar, together with the related enzyme formate dehydrogenase (Fdh-N), is a key enzyme in the generation of proton motive force across the membrane in Escherichia coli nitrate respiration. A comparative study revealed that Nar and Fdh-N employ different approaches for acquiring substrate, reflecting different catalytic mechanisms. Nar uses a very narrow and nonpolar substrate-conducting cavity with a nonspecific substrate binding site, whereas Fdh-N accommodates a wider, positively charged substrate-conducting cavity with a more specific substrate binding site. The Nar structure also demonstrates the first example of an Asp side chain acting as a Mo ligand providing a structural basis for the classification of Mo-bisMGD enzymes.


Asunto(s)
Dominio Catalítico , Escherichia coli/enzimología , Formiato Deshidrogenasas/química , Molibdeno/química , Nitrato Reductasas/química , Secuencia de Aminoácidos , Catálisis , Cristalografía por Rayos X , Cisteína/química , Transporte de Electrón/fisiología , Histidina/química , Modelos Moleculares , Datos de Secuencia Molecular , Nitrato-Reductasa , Fuerza Protón-Motriz/fisiología , Electricidad Estática
18.
Pharmacol Ther ; 97(3): 223-61, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12576135

RESUMEN

Cardiac myocyte death, whether through necrotic or apoptotic mechanisms, is a contributing factor to many cardiac pathologies. Although necrosis and apoptosis are the widely accepted forms of cell death, they may utilize the same cell death machinery. The environment within the cell probably dictates the final outcome, producing a spectrum of response between the two extremes. This review examines the probable mechanisms involved in myocyte death. Caspases, the generally accepted executioners of apoptosis, are significant in executing cardiac myocyte death, but other proteases (e.g., calpains, cathepsins) also promote cell death, and these are discussed. The two principal cell death pathways (death receptor- and mitochondrial-mediated) are described in relation to the emerging structural information for the principal proteins, and they are discussed relative to current understanding of myocyte cell death mechanisms. Whereas the mitochondrial pathway is probably a significant factor in myocyte death in both acute and chronic phases of myocardial diseases, the death receptor pathway may prove significant in the longer term. The Bcl-2 family of proteins are key regulators of the mitochondrial death pathway. These proteins are described and their possible functions are discussed. The commitment to cell death is also influenced by protein kinase cascades that are activated in the cell. Whereas certain pathways are cytoprotective (e.g., phosphatidylinositol 3'-kinase), the roles of other kinases are less clear. Since myocyte death is implicated in a number of cardiac pathologies, attenuation of the death pathways may prove important in ameliorating such disease states, and possible therapeutic strategies are explored.


Asunto(s)
Miocitos Cardíacos/citología , Miocitos Cardíacos/fisiología , Secuencia de Aminoácidos/fisiología , Animales , Caspasas/genética , Caspasas/metabolismo , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Datos de Secuencia Molecular , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Homología de Secuencia de Aminoácido
19.
Nat Commun ; 6: 8545, 2015 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-26461048

RESUMEN

In vertebrates, the iron exporter ferroportin releases Fe(2+) from cells into plasma, thereby maintaining iron homeostasis. The transport activity of ferroportin is suppressed by the peptide hormone hepcidin, which exhibits upregulated expression in chronic inflammation, causing iron-restrictive anaemia. However, due to the lack of structural information about ferroportin, the mechanisms of its iron transport and hepcidin-mediated regulation remain largely elusive. Here we report the crystal structures of a putative bacterial homologue of ferroportin, BbFPN, in both the outward- and inward-facing states. Despite undetectable sequence similarity, BbFPN adopts the major facilitator superfamily fold. A comparison of the two structures reveals that BbFPN undergoes an intra-domain conformational rearrangement during the transport cycle. We identify a substrate metal-binding site, based on structural and mutational analyses. Furthermore, the BbFPN structures suggest that a predicted hepcidin-binding site of ferroportin is located within its central cavity. Thus, BbFPN may be a valuable structural model for iron homeostasis regulation by ferroportin.


Asunto(s)
Bdellovibrio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Sitios de Unión , Proteínas de Transporte de Catión/química , Humanos , Hierro/metabolismo , Conformación Proteica , Homología Estructural de Proteína
20.
FEBS Lett ; 545(1): 25-30, 2003 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-12788488

RESUMEN

Respiration involves the oxidation and reduction of substrate for the redox-linked formation of a protonmotive force (PMF) across the inner membrane of mitochondria or the plasma membrane of bacteria. A mechanism for PMF generation was first suggested by Mitchell in his chemiosmotic theory. In the original formulations of the theory, Mitchell envisaged that proton translocation was driven by a 'redox loop' between two catalytically distinct enzyme complexes. Experimental data have shown that this redox loop does not operate in mitochondria, but has been confirmed as an important mechanism in bacteria. The nitrate respiratory pathway in Escherichia coli is a paradigm for a protonmotive redox loop. The structure of one of the enzymes in this two-component system, formate dehydrogenase-N, has revealed the structural basis for the PMF generation by the redox loop mechanism and this forms the basis of this review.


Asunto(s)
Formiato Deshidrogenasas/química , Fuerza Protón-Motriz , Respiración de la Célula , Ambiente , Escherichia coli/metabolismo , Formiato Deshidrogenasas/metabolismo , Modelos Moleculares , Nitratos/metabolismo , Oxidación-Reducción , Células Procariotas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA