Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(34): e2402970121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39133856

RESUMEN

Ecosystem restoration is inherently a complex activity with inevitable tradeoffs in environmental and societal outcomes. These tradeoffs can potentially be large when policies and practices are focused on single outcomes versus joint achievement of multiple outcomes. Few studies have assessed the tradeoffs in Nature's Contributions to People (NCP) and the distributional equity of NCP from forest restoration strategies. Here, we optimized a defined forest restoration area across India with systematic conservation planning to assess the tradeoffs between three NCP: i) climate change mitigation NCP, ii) biodiversity value NCP (habitat created for forest-dependent mammals), and iii) societal NCP (human direct use of restored forests for livelihoods, housing construction material, and energy). We show that restoration plans aimed at a single-NCP tend not to deliver other NCP outcomes efficiently. In contrast, integrated spatial forest restoration plans aimed at achievement of multiple outcomes deliver on average 83.3% (43.2 to 100%) of climate change mitigation NCP, 89.9% (63.8 to 100%) of biodiversity value NCP, and 93.9% (64.5 to 100%) of societal NCP delivered by single-objective plans. Integrated plans deliver NCP more evenly across the restoration area when compared to other plans that identify certain regions such as the Western Ghats and north-eastern India. Last, 38 to 41% of the people impacted by integrated spatial plans belong to socioeconomically disadvantaged groups, greater than their overall representation in India's population. Moving ahead, effective policy design and evaluation integrating ecosystem protection and restoration strategies can benefit from the blueprint we provide in this study for India.


Asunto(s)
Biodiversidad , Cambio Climático , Conservación de los Recursos Naturales , Bosques , Conservación de los Recursos Naturales/métodos , Humanos , India , Ecosistema , Restauración y Remediación Ambiental/métodos
2.
Reg Environ Change ; 17(3): 753-766, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32214900

RESUMEN

We examine the dynamics and spatial determinants of land change in India by integrating decadal land cover maps (1985-1995-2005) from a wall-to-wall analysis of Landsat images with spatiotemporal socioeconomic database for ~630,000 villages in India. We reinforce our results through collective evidence from synthesis of 102 case studies that incorporate field knowledge of the causes of land change in India. We focus on cropland-fallow land conversions, and forest area changes (excludes non-forest tree categories including commercial plantations). We show that cropland to fallow conversions are prominently associated with lack of irrigation and capital, male agricultural labor shortage, and fragmentation of land holdings. We find gross forest loss is substantial and increased from ~23,810 km2 (1985-1995) to ~25,770 km2 (1995-2005). The gross forest gain also increased from ~6000 km2 (1985-1995) to ~7440 km2 (1995-2005). Overall, India experienced a net decline in forest by ~18,000 km2 (gross loss-gross gain) consistently during both decades. We show that the major source of forest loss was cropland expansion in areas of low cropland productivity (due to soil degradation and lack of irrigation), followed by industrial development and mining/quarrying activities, and excessive economic dependence of villages on forest resources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA