Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 155(7): 1507-20, 2013 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-24360274

RESUMEN

A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner.


Asunto(s)
Linfocitos B/metabolismo , Células Madre Embrionarias/metabolismo , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Regiones Promotoras Genéticas , Regulón , Animales , Linaje de la Célula , Células Cultivadas , Islas de CpG , Metilación de ADN , Técnicas Genéticas , Ratones , Especificidad de Órganos , ARN Largo no Codificante/genética , Factores de Transcripción/metabolismo , Transcripción Genética
2.
Mol Cell ; 79(1): 11-29, 2020 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-32619467

RESUMEN

The CRISPR-Cas system offers a programmable platform for eukaryotic genome and epigenome editing. The ability to perform targeted genetic and epigenetic perturbations enables researchers to perform a variety of tasks, ranging from investigating questions in basic biology to potentially developing novel therapeutics for the treatment of disease. While CRISPR systems have been engineered to target DNA and RNA with increased precision, efficiency, and flexibility, assays to identify off-target editing are becoming more comprehensive and sensitive. Furthermore, techniques to perform high-throughput genome and epigenome editing can be paired with a variety of readouts and are uncovering important cellular functions and mechanisms. These technological advances drive and are driven by accompanying computational approaches. Here, we briefly present available CRISPR technologies and review key computational advances and considerations for various CRISPR applications. In particular, we focus on the analysis of on- and off-target editing and CRISPR pooled screen data.


Asunto(s)
Sistemas CRISPR-Cas , Biología Computacional/métodos , Epigenómica , Edición Génica , Genoma Humano , Humanos
3.
Cell ; 150(3): 647-58, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863014

RESUMEN

Eukaryotic transcription factors (TFs) perform complex and combinatorial functions within transcriptional networks. Here, we present a synthetic framework for systematically constructing eukaryotic transcription functions using artificial zinc fingers, modular DNA-binding domains found within many eukaryotic TFs. Utilizing this platform, we construct a library of orthogonal synthetic transcription factors (sTFs) and use these to wire synthetic transcriptional circuits in yeast. We engineer complex functions, such as tunable output strength and transcriptional cooperativity, by rationally adjusting a decomposed set of key component properties, e.g., DNA specificity, affinity, promoter design, protein-protein interactions. We show that subtle perturbations to these properties can transform an individual sTF between distinct roles (activator, cooperative factor, inhibitory factor) within a transcriptional complex, thus drastically altering the signal processing behavior of multi-input systems. This platform provides new genetic components for synthetic biology and enables bottom-up approaches to understanding the design principles of eukaryotic transcriptional complexes and networks.


Asunto(s)
Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Dedos de Zinc , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Biología Sintética , Factores de Transcripción/metabolismo , Transcripción Genética
4.
Nat Rev Mol Cell Biol ; 14(1): 49-55, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23169466

RESUMEN

Engineered nucleases enable the targeted alteration of nearly any gene in a wide range of cell types and organisms. The newly-developed transcription activator-like effector nucleases (TALENs) comprise a nonspecific DNA-cleaving nuclease fused to a DNA-binding domain that can be easily engineered so that TALENs can target essentially any sequence. The capability to quickly and efficiently alter genes using TALENs promises to have profound impacts on biological research and to yield potential therapeutic strategies for genetic diseases.


Asunto(s)
ADN/metabolismo , Desoxirribonucleasas/química , Desoxirribonucleasas/metabolismo , Genoma , Ingeniería de Proteínas , Animales , ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Desoxirribonucleasas/genética , Humanos , Estructura Terciaria de Proteína , Activación Transcripcional
5.
Nature ; 569(7756): 433-437, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30995674

RESUMEN

CRISPR-Cas base-editor technology enables targeted nucleotide alterations, and is being increasingly used for research and potential therapeutic applications1,2. The most widely used cytosine base editors (CBEs) induce deamination of DNA cytosines using the rat APOBEC1 enzyme, which is targeted by a linked Cas protein-guide RNA complex3,4. Previous studies of the specificity of CBEs have identified off-target DNA edits in mammalian cells5,6. Here we show that a CBE with rat APOBEC1 can cause extensive transcriptome-wide deamination of RNA cytosines in human cells, inducing tens of thousands of C-to-U edits with frequencies ranging from 0.07% to 100% in 38-58% of expressed genes. CBE-induced RNA edits occur in both protein-coding and non-protein-coding sequences and generate missense, nonsense, splice site, and 5' and 3' untranslated region mutations. We engineered two CBE variants bearing mutations in rat APOBEC1 that substantially decreased the number of RNA edits (by more than 390-fold and more than 3,800-fold) in human cells. These variants also showed more precise on-target DNA editing than the wild-type CBE and, for most guide RNAs tested, no substantial reduction in editing efficiency. Finally, we show that an adenine base editor7 can also induce transcriptome-wide RNA edits. These results have implications for the use of base editors in both research and clinical settings, illustrate the feasibility of engineering improved variants with reduced RNA editing activities, and suggest the need to more fully define and characterize the RNA off-target effects of deaminase enzymes in base editor platforms.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Edición de ARN , Especificidad por Sustrato/genética , Transcriptoma/genética , Desaminasas APOBEC-1/química , Desaminasas APOBEC-1/genética , Desaminasas APOBEC-1/metabolismo , Animales , Secuencia de Bases , Citosina/metabolismo , Desaminación , Células HEK293 , Células Hep G2 , Humanos , Mutación , ARN/química , ARN/metabolismo , Ratas
6.
Nat Methods ; 18(9): 1075-1081, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34354266

RESUMEN

Epigenetic editing is an emerging technology that uses artificial transcription factors (aTFs) to regulate expression of a target gene. Although human genes can be robustly upregulated by targeting aTFs to promoters, the activation induced by directing aTFs to distal transcriptional enhancers is substantially less robust and consistent. Here we show that long-range activation using CRISPR-based aTFs in human cells can be made more efficient and reliable by concurrently targeting an aTF to the target gene promoter. We used this strategy to direct target gene choice for enhancers capable of regulating more than one promoter and to achieve allele-selective activation of human genes by targeting aTFs to single-nucleotide polymorphisms embedded in distally located sequences. Our results broaden the potential applications of the epigenetic editing toolbox for research and therapeutics.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Marcación de Gen/métodos , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Alelos , Apolipoproteína C-III/genética , Apolipoproteínas A/genética , Línea Celular , Elementos de Facilitación Genéticos , Humanos , Subunidad alfa del Receptor de Interleucina-2/genética , Proteína MioD/genética , Polimorfismo de Nucleótido Simple , Activación Transcripcional , Globinas beta/genética
7.
Nature ; 561(7723): 416-419, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30209390

RESUMEN

CRISPR-Cas genome-editing nucleases hold substantial promise for developing human therapeutic applications1-6 but identifying unwanted off-target mutations is important for clinical translation7. A well-validated method that can reliably identify off-targets in vivo has not been described to date, which means it is currently unclear whether and how frequently these mutations occur. Here we describe 'verification of in vivo off-targets' (VIVO), a highly sensitive strategy that can robustly identify the genome-wide off-target effects of CRISPR-Cas nucleases in vivo. We use VIVO and a guide RNA deliberately designed to be promiscuous to show that CRISPR-Cas nucleases can induce substantial off-target mutations in mouse livers in vivo. More importantly, we also use VIVO to show that appropriately designed guide RNAs can direct efficient in vivo editing in mouse livers with no detectable off-target mutations. VIVO provides a general strategy for defining and quantifying the off-target effects of gene-editing nucleases in whole organisms, thereby providing a blueprint to foster the development of therapeutic strategies that use in vivo gene editing.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Edición Génica/normas , Genoma/genética , Mutación , Especificidad por Sustrato/genética , Animales , Proteínas Asociadas a CRISPR/genética , Femenino , Humanos , Mutación INDEL , Masculino , Ratones , Ratones Endogámicos C57BL , Proproteína Convertasa 9/genética , Transgenes/genética
8.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34050017

RESUMEN

CRISPR-Cas9 nuclease-based gene drives have been developed toward the aim of control of the human malaria vector Anopheles gambiae Gene drives are based on an active source of Cas9 nuclease in the germline that promotes super-Mendelian inheritance of the transgene by homology-directed repair ("homing"). Understanding whether CRISPR-induced off-target mutations are generated in Anopheles mosquitoes is an important aspect of risk assessment before any potential field release of this technology. We compared the frequencies and the propensity of off-target events to occur in four different gene-drive strains, including a deliberately promiscuous set-up, using a nongermline restricted promoter for SpCas9 and a guide RNA with many closely related sites (two or more mismatches) across the mosquito genome. Under this scenario we observed off-target mutations at frequencies no greater than 1.42%. We witnessed no evidence that CRISPR-induced off-target mutations were able to accumulate (or drive) in a mosquito population, despite multiple generations' exposure to the CRISPR-Cas9 nuclease construct. Furthermore, judicious design of the guide RNA used for homing of the CRISPR construct, combined with tight temporal constriction of Cas9 expression to the germline, rendered off-target mutations undetectable. The findings of this study represent an important milestone for the understanding and managing of CRISPR-Cas9 specificity in mosquitoes, and demonstrates that CRISPR off-target editing in the context of a mosquito gene drive can be reduced to minimal levels.


Asunto(s)
Anopheles/genética , Sistemas CRISPR-Cas , Edición Génica , Genoma de los Insectos , Malaria , Mosquitos Vectores/genética , Animales , Humanos
9.
Nature ; 550(7676): 407-410, 2017 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-28931002

RESUMEN

The RNA-guided CRISPR-Cas9 nuclease from Streptococcus pyogenes (SpCas9) has been widely repurposed for genome editing. High-fidelity (SpCas9-HF1) and enhanced specificity (eSpCas9(1.1)) variants exhibit substantially reduced off-target cleavage in human cells, but the mechanism of target discrimination and the potential to further improve fidelity are unknown. Here, using single-molecule Förster resonance energy transfer experiments, we show that both SpCas9-HF1 and eSpCas9(1.1) are trapped in an inactive state when bound to mismatched targets. We find that a non-catalytic domain within Cas9, REC3, recognizes target complementarity and governs the HNH nuclease to regulate overall catalytic competence. Exploiting this observation, we design a new hyper-accurate Cas9 variant (HypaCas9) that demonstrates high genome-wide specificity without compromising on-target activity in human cells. These results offer a more comprehensive model to rationalize and modify the balance between target recognition and nuclease activation for precision genome editing.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Edición Génica/métodos , Mutagénesis , Streptococcus pyogenes/enzimología , Biotecnología/métodos , Proteínas Asociadas a CRISPR/genética , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Activación Enzimática , Variación Genética , Humanos , Dominios Proteicos , Streptococcus pyogenes/genética , Especificidad por Sustrato
10.
Genes Dev ; 29(10): 1018-31, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25995187

RESUMEN

Copy number heterogeneity is a prominent feature within tumors. The molecular basis for this heterogeneity remains poorly characterized. Here, we demonstrate that hypoxia induces transient site-specific copy gains (TSSGs) in primary, nontransformed, and transformed human cells. Hypoxia-driven copy gains are not dependent on HIF1α or HIF2α; however, they are dependent on the KDM4A histone demethylase and are blocked by inhibition of KDM4A with a small molecule or the natural metabolite succinate. Furthermore, this response is conserved at a syntenic region in zebrafish cells. Regions with site-specific copy gain are also enriched for amplifications in hypoxic primary tumors. These tumors exhibited amplification and overexpression of the drug resistance gene CKS1B, which we recapitulated in hypoxic breast cancer cells. Our results demonstrate that hypoxia provides a biological stimulus to create transient site-specific copy alterations that could result in heterogeneity within tumors and cell populations. These findings have major implications in our understanding of copy number heterogeneity and the emergence of drug resistance genes in cancer.


Asunto(s)
Hipoxia de la Célula/fisiología , Variaciones en el Número de Copia de ADN/genética , Regulación de la Expresión Génica , Animales , Quinasas CDC2-CDC28/genética , Hipoxia de la Célula/genética , Línea Celular , Proliferación Celular , Células Cultivadas , Resistencia a Antineoplásicos/genética , Humanos , Pez Cebra
11.
Nat Rev Genet ; 17(5): 300-12, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27087594

RESUMEN

CRISPR-Cas9 RNA-guided nucleases are a transformative technology for biology, genetics and medicine owing to the simplicity with which they can be programmed to cleave specific DNA target sites in living cells and organisms. However, to translate these powerful molecular tools into safe, effective clinical applications, it is of crucial importance to carefully define and improve their genome-wide specificities. Here, we outline our state-of-the-art understanding of target DNA recognition and cleavage by CRISPR-Cas9 nucleases, methods to determine and improve their specificities, and key considerations for how to evaluate and reduce off-target effects for research and therapeutic applications.


Asunto(s)
Sistemas CRISPR-Cas/genética , ADN/genética , Endonucleasas/metabolismo , Ingeniería Genética , Genoma Humano , Humanos
12.
Nature ; 529(7587): 490-5, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26735016

RESUMEN

CRISPR-Cas9 nucleases are widely used for genome editing but can induce unwanted off-target mutations. Existing strategies for reducing genome-wide off-target effects of the widely used Streptococcus pyogenes Cas9 (SpCas9) are imperfect, possessing only partial or unproven efficacies and other limitations that constrain their use. Here we describe SpCas9-HF1, a high-fidelity variant harbouring alterations designed to reduce non-specific DNA contacts. SpCas9-HF1 retains on-target activities comparable to wild-type SpCas9 with >85% of single-guide RNAs (sgRNAs) tested in human cells. Notably, with sgRNAs targeted to standard non-repetitive sequences, SpCas9-HF1 rendered all or nearly all off-target events undetectable by genome-wide break capture and targeted sequencing methods. Even for atypical, repetitive target sites, the vast majority of off-target mutations induced by wild-type SpCas9 were not detected with SpCas9-HF1. With its exceptional precision, SpCas9-HF1 provides an alternative to wild-type SpCas9 for research and therapeutic applications. More broadly, our results suggest a general strategy for optimizing genome-wide specificities of other CRISPR-RNA-guided nucleases.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/fisiología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Endonucleasas/metabolismo , Ingeniería Genética , Genoma Humano/genética , Secuencia de Bases , ADN/genética , ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Humanos , Mutación , Unión Proteica , ARN/genética , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN , Streptococcus pyogenes/enzimología , Streptococcus pyogenes/genética , Especificidad por Sustrato
13.
Genes Dev ; 28(17): 1957-75, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25184681

RESUMEN

BRCA1 is a breast and ovarian tumor suppressor. Given its numerous incompletely understood functions and the possibility that more exist, we performed complementary systematic screens in search of new BRCA1 protein-interacting partners. New BRCA1 functions and/or a better understanding of existing ones were sought. Among the new interacting proteins identified, genetic interactions were detected between BRCA1 and four of the interactors: TONSL, SETX, TCEANC, and TCEA2. Genetic interactions were also detected between BRCA1 and certain interactors of TONSL, including both members of the FACT complex. From these results, a new BRCA1 function in the response to transcription-associated DNA damage was detected. Specifically, new roles for BRCA1 in the restart of transcription after UV damage and in preventing or repairing damage caused by stabilized R loops were identified. These roles are likely carried out together with some of the newly identified interactors. This new function may be important in BRCA1 tumor suppression, since the expression of several interactors, including some of the above-noted transcription proteins, is repeatedly aberrant in both breast and ovarian cancers.


Asunto(s)
Proteína BRCA1/metabolismo , Daño del ADN/genética , Reparación del ADN/genética , Transcripción Genética/genética , Proteína BRCA1/genética , Línea Celular Tumoral , Células HeLa , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Rayos Ultravioleta
14.
J Neurosci ; 40(1): 143-158, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31685652

RESUMEN

Down syndrome cell adhesion molecules (dscam and dscaml1) are essential regulators of neural circuit assembly, but their roles in vertebrate neural circuit function are still mostly unexplored. We investigated the functional consequences of dscaml1 deficiency in the larval zebrafish (sexually undifferentiated) oculomotor system, where behavior, circuit function, and neuronal activity can be precisely quantified. Genetic perturbation of dscaml1 resulted in deficits in retinal patterning and light adaptation, consistent with its known roles in mammals. Oculomotor analyses revealed specific deficits related to the dscaml1 mutation, including severe fatigue during gaze stabilization, reduced saccade amplitude and velocity in the light, greater disconjugacy, and impaired fixation. Two-photon calcium imaging of abducens neurons in control and dscaml1 mutant animals confirmed deficits in saccade-command signals (indicative of an impairment in the saccadic premotor pathway), whereas abducens activation by the pretectum-vestibular pathway was not affected. Together, we show that loss of dscaml1 resulted in impairments in specific oculomotor circuits, providing a new animal model to investigate the development of oculomotor premotor pathways and their associated human ocular disorders.SIGNIFICANCE STATEMENTDscaml1 is a neural developmental gene with unknown behavioral significance. Using the zebrafish model, this study shows that dscaml1 mutants have a host of oculomotor (eye movement) deficits. Notably, the oculomotor phenotypes in dscaml1 mutants are reminiscent of human ocular motor apraxia, a neurodevelopmental disorder characterized by reduced saccade amplitude and gaze stabilization deficits. Population-level recording of neuronal activity further revealed potential subcircuit-specific requirements for dscaml1 during oculomotor behavior. These findings underscore the importance of dscaml1 in the development of visuomotor function and characterize a new model to investigate potential circuit deficits underlying human oculomotor disorders.


Asunto(s)
Movimientos Oculares/fisiología , Adaptación Ocular/genética , Adaptación Ocular/fisiología , Células Amacrinas/fisiología , Animales , Animales Modificados Genéticamente , Señalización del Calcio , Moléculas de Adhesión Celular/fisiología , Movimientos Oculares/genética , Fijación Ocular/genética , Fijación Ocular/fisiología , Larva , Locomoción , Fatiga Muscular , Mutación , Músculos Oculomotores/crecimiento & desarrollo , Músculos Oculomotores/fisiopatología , Retina/crecimiento & desarrollo , Retina/ultraestructura , Movimientos Sacádicos/genética , Movimientos Sacádicos/fisiología , Pez Cebra/crecimiento & desarrollo , Proteínas de Pez Cebra/fisiología
15.
Nat Rev Genet ; 16(3): 159-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25668787

RESUMEN

As synthetic biology approaches are extended to diverse applications throughout medicine, biotechnology and basic biological research, there is an increasing need to engineer yeast, plant and mammalian cells. Eukaryotic genomes are regulated by the diverse biochemical and biophysical states of chromatin, which brings distinct challenges, as well as opportunities, over applications in bacteria. Recent synthetic approaches, including 'epigenome editing', have allowed the direct and functional dissection of many aspects of physiological chromatin regulation. These studies lay the foundation for biomedical and biotechnological engineering applications that could take advantage of the unique combinatorial and spatiotemporal layers of chromatin regulation to create synthetic systems of unprecedented sophistication.


Asunto(s)
Cromatina/metabolismo , Epigénesis Genética , Genoma , Histonas/metabolismo , ARN no Traducido/metabolismo , Biología Sintética , Animales , Ingeniería Celular/métodos , Cromatina/química , Histonas/química , Humanos , Plantas/genética , Plantas/metabolismo , ARN no Traducido/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Biología de Sistemas
16.
Nature ; 523(7561): 481-5, 2015 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-26098369

RESUMEN

Although CRISPR-Cas9 nucleases are widely used for genome editing, the range of sequences that Cas9 can recognize is constrained by the need for a specific protospacer adjacent motif (PAM). As a result, it can often be difficult to target double-stranded breaks (DSBs) with the precision that is necessary for various genome-editing applications. The ability to engineer Cas9 derivatives with purposefully altered PAM specificities would address this limitation. Here we show that the commonly used Streptococcus pyogenes Cas9 (SpCas9) can be modified to recognize alternative PAM sequences using structural information, bacterial selection-based directed evolution, and combinatorial design. These altered PAM specificity variants enable robust editing of endogenous gene sites in zebrafish and human cells not currently targetable by wild-type SpCas9, and their genome-wide specificities are comparable to wild-type SpCas9 as judged by GUIDE-seq analysis. In addition, we identify and characterize another SpCas9 variant that exhibits improved specificity in human cells, possessing better discrimination against off-target sites with non-canonical NAG and NGA PAMs and/or mismatched spacers. We also find that two smaller-size Cas9 orthologues, Streptococcus thermophilus Cas9 (St1Cas9) and Staphylococcus aureus Cas9 (SaCas9), function efficiently in the bacterial selection systems and in human cells, suggesting that our engineering strategies could be extended to Cas9s from other species. Our findings provide broadly useful SpCas9 variants and, more importantly, establish the feasibility of engineering a wide range of Cas9s with altered and improved PAM specificities.


Asunto(s)
Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Motivos de Nucleótidos , Ingeniería de Proteínas/métodos , Streptococcus pyogenes/enzimología , Sustitución de Aminoácidos/genética , Animales , Sistemas CRISPR-Cas , Línea Celular , Evolución Molecular Dirigida , Genoma/genética , Humanos , Mutación/genética , Staphylococcus aureus/enzimología , Streptococcus thermophilus/enzimología , Especificidad por Sustrato/genética , Pez Cebra/embriología , Pez Cebra/genética
17.
Nat Methods ; 14(6): 607-614, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28459458

RESUMEN

Sensitive detection of off-target effects is important for translating CRISPR-Cas9 nucleases into human therapeutics. In vitro biochemical methods for finding off-targets offer the potential advantages of greater reproducibility and scalability while avoiding limitations associated with strategies that require the culture and manipulation of living cells. Here we describe circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), a highly sensitive, sequencing-efficient in vitro screening strategy that outperforms existing cell-based or biochemical approaches for identifying CRISPR-Cas9 genome-wide off-target mutations. In contrast to previously described in vitro methods, we show that CIRCLE-seq can be practiced using widely accessible next-generation sequencing technology and does not require reference genome sequences. Importantly, CIRCLE-seq can be used to identify off-target mutations associated with cell-type-specific single-nucleotide polymorphisms, demonstrating the feasibility and importance of generating personalized specificity profiles. CIRCLE-seq provides an accessible, rapid, and comprehensive method for identifying genome-wide off-target mutations of CRISPR-Cas9.


Asunto(s)
Sistemas CRISPR-Cas/genética , Mapeo Cromosómico/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Desoxirribonucleasas/genética , Genoma/genética , Análisis de Secuencia de ADN/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
18.
Nat Methods ; 14(12): 1163-1166, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29083402

RESUMEN

Targeted and inducible regulation of mammalian gene expression is a broadly important capability. We engineered drug-inducible catalytically inactive Cpf1 nuclease fused to transcriptional activation domains to tune the expression of endogenous genes in human cells. Leveraging the multiplex capability of the Cpf1 platform, we demonstrate both synergistic and combinatorial gene expression in human cells. Our work should enable the development of multiplex gene perturbation library screens for understanding complex cellular phenotypes.


Asunto(s)
Proteínas Bacterianas/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Endonucleasas/genética , Activación Transcripcional , Técnicas de Cultivo de Célula , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Proteína Vmw65 de Virus del Herpes Simple/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Plásmidos , Proteínas Recombinantes de Fusión/genética , Transactivadores/genética , Factor de Transcripción ReIA/genética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA