Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 16(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36984369

RESUMEN

Fatigue cracking is a common form of flexible pavement distress, which generally starts and spreads through bitumen. To address this issue, self-healing elastomer (SHE) modified bitumens were elaborated to assess whether these novel materials can overcome the neat asphalt (NA) fatigue performance and whether the current failure definition, failure criterion, and fatigue-restoration criteria can fit their performance. All bitumens were subjected to short-term and long-term aging. Linear amplitude sweep (LAS) test, LAS with rest period (LASH), and simplified viscoelastic-continuum-damage (S-VECD) model were utilized to appraise the behavior of the mentioned bitumens. The results showed that maximum stored pseudo-strain energy (PSE) and tau (τ) × N (number of loading cycles) failure definitions exhibited high efficiency to accommodate the fatigue life of NA and SHE-modified bitumens. Both failure criteria identified that SHE-modified bitumen (containing 1% of SHE) showed the highest increment of fatigue performance (67.1%) concerning NA. The failure criterion based on total released PSE, in terms of the area under the released PSE curve, was the only failure concept with high efficiency (R2 up to 0.999) to predict asphalt binder fatigue life. As well, the current framework to evaluate bitumen self-restoration failed to fully accommodate asphalt binder behavior, because bitumen with higher restoration could not exhibit greater fatigue performance. Consequently, a new procedure to assess this property including fatigue behavior was proposed, showing consistent results, and confirming that SHE-modified bitumen (containing 1% of SHE) exhibited the highest increment of fatigue performance (154.02%) after application of the rest period. Hence, the optimum SHE content in NA was 1%. Furthermore, it was found that a greater number of loading cycles to failure (Nf) did not ensure better fatigue performance and stored PSE influenced the bitumen fatigue behavior.

2.
Materials (Basel) ; 15(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36234145

RESUMEN

An increasing amount of waste seashells in China has caused serious environmental pollution and resource waste. This paper aims to solve these problems by using waste seashells as modified materials to prepare high-performance modified asphalt. In this study, seashell powder (SP) and stratum corneum-exfoliated seashell powder (SCESP) were adopted to prepare 10%, 20% and 30% of seashell powder-modified asphalt (SPMA) and stratum corneum-exfoliated seashell powder-modified asphalt (SCESPMA) by the high-speed shear apparatus, respectively. The appearance and composition of two kinds of SPs were observed and determined by the scanning electron microscope (SEM). The types of functional groups, temperature frequency characteristics, low temperature performance and adhesion of SPMA were tested by the Fourier-transform infrared (FTIR) spectrometer, dynamic shear rheometer (DSR), bending beam rheometer (BBR) and contact angle meter. The results show that the SP and SCESP are rough and porous, and their main component is CaCO3, which is physically miscible to asphalt. When the loading frequency ranges from 0.1 Hz to 10 Hz, the complex shear modulus (G*) and phase angle (δ) of SPMA and SCESPMA increase and decrease, respectively. At the same load frequency, SCESPMA has a larger G* and a smaller δ than SPMA. At the same temperature, SCESPMA has a larger rutting factor (G*/sin δ) and better high-temperature deformation resistance than SPMA. SP and SCESP reduce the low-temperature cracking resistance of asphalt, of which SCESP has a more adverse effect on the low-temperature performance of asphalt than SP. When SP and SCESP are mixed with asphalt, the cohesion work (Waa), adhesion work (Was) and comprehensive evaluation parameters of water stability (ER1, ER2 and ER3) of asphalt are improved. It is shown that both SP and SCESP have good water damage resistance, of which SCESP has better water damage resistance than SP. These research results have important reference value for the application of waste biological materials in asphalt pavement.

3.
Polymers (Basel) ; 14(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36501491

RESUMEN

With the continuous development of road construction and maintenance, SBS(Styrene-butadiene-styrene)-modified asphalt is widely used. However, there is no mature method for restoring aged SBS-modified asphalt. This study proposes the use of SBR(polymerized styrene butadiene rubber) and bio-oil for the restoration of aged SBS. In this study, five kinds of recycled asphalt were prepared by adding 5% bio-oil, 10% bio-oil, 6% SBR, 6% SBR + 5% bio-oil, and 6% SBR + 10% bio-oil to long-term aged SBS-modified asphalt. Softening point, penetration, and rotational viscosity experiments were tested to evaluate the conventional properties. Rheological tests revealed the performance of asphalt. Fourier transform infrared spectroscopy (FTIR), and atomic force microscope (AFM) tests were tested to demonstrate the microscopic characteristics of asphalt. Conventional tests investigated that aged asphalt viscosity will increase. Bio-oil could well recycle the asphalt viscosity. SBR could also soften aged asphalt, but its modification effect is limited compared with bio-oil. Rheological tests presented that the SBR and bio-oil have little impact on the temperature sensitivity of SBS-modified asphalt. SBR and bio-oil could decrease the asphalt stiffness. However, SBR and bio-oil could ameliorate the anti-cracking behavior of aged asphalt. The microscopic tests exhibited that SBR and bio-oil could decrease the asphaltene and colloid. Meanwhile, bio-oil could supplement alcohols and ethers at wave number 1000 cm-1-1270 cm-1. Alcohols and ethers are hard to oxidize, something which has a beneficial role in the anti-aged of recycled asphalt.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA