Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Infect Dis ; 229(4): 959-968, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37992117

RESUMEN

BACKGROUND: Recent data indicate that non-Plasmodium falciparum species may be more prevalent than thought in sub-Saharan Africa. Although Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax are less severe than P. falciparum, treatment and control are more challenging, and their geographic distributions are not well characterized. METHODS: We randomly selected 3284 of 12 845 samples collected from cross-sectional surveys in 100 health facilities across 10 regions of Mainland Tanzania and performed quantitative real-time PCR to determine presence and parasitemia of each malaria species. RESULTS: P. falciparum was most prevalent, but P. malariae and P. ovale were found in all but 1 region, with high levels (>5%) of P. ovale in 7 regions. The highest P. malariae positivity rate was 4.5% in Mara and 8 regions had positivity rates ≥1%. We only detected 3 P. vivax infections, all in Kilimanjaro. While most nonfalciparum malaria-positive samples were coinfected with P. falciparum, 23.6% (n = 13 of 55) of P. malariae and 14.7% (n = 24 of 163) of P. ovale spp. were monoinfections. CONCLUSIONS: P. falciparum remains by far the largest threat, but our data indicate that malaria elimination efforts in Tanzania will require increased surveillance and improved understanding of the biology of nonfalciparum species.


Asunto(s)
Malaria Falciparum , Malaria , Humanos , Tanzanía/epidemiología , Estudios Transversales , Malaria/epidemiología , Malaria Falciparum/epidemiología , Plasmodium malariae/genética
2.
J Infect Dis ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38781438

RESUMEN

BACKGROUND: Asymptomatic carriage of malaria parasites persists even as malaria transmission declines. Low density infections are often submicroscopic, not detected by rapid diagnostic tests (RDTs) or microscopy, but detectable by PCR. METHODS: To characterize submicroscopic Plasmodium falciparum carriage in an area of declining malaria transmission, asymptomatic persons >5 years of age in rural Bagamoyo District, Tanzania, were screened using RDT, microscopy, and PCR. We investigated the size of the submicroscopic reservoir of infection across villages, determined factors associated with submicroscopic carriage, and assessed the natural history of submicroscopic malaria over four weeks. RESULTS: Among 6,076 participants, P. falciparum prevalence by RDT, microscopy, and PCR was 9%, 9%, and 28%, respectively, with roughly two-thirds of PCR-positive individuals harboring submicroscopic infection. Adult status, female gender, dry season months, screened windows, and bednet use were associated with submicroscopic carriage. Among 15 villages encompassing 80% of participants, the proportion of submicroscopic carriers increased with decreasing village-level malaria prevalence. Over four weeks, 23% (61/266) of submicroscopic carriers became RDT-positive, with half exhibiting symptoms, while half (133/266) were no longer parasitemic at the end of four weeks. Progression to RDT-positive patent malaria occurred more frequently in villages with higher malaria prevalence. CONCLUSIONS: Micro-heterogeneity in transmission observed at the village level appears to impact both the size of the submicroscopic reservoir and the likelihood of submicroscopic carriers developing patent malaria in coastal Tanzania.

3.
Trop Med Int Health ; 29(6): 499-506, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38584312

RESUMEN

OBJECTIVES: A lumbar puncture (LP) procedure plays a key role in meningitis diagnosis. In Malawi and other sub-Saharan African countries, LP completion rates are sometimes poor, making meningitis surveillance challenging. Our objective was to measure LP rates following an intervention to improve these during a sentinel hospital meningitis surveillance exercise in Malawi. METHODS: We conducted a before/after intervention analysis among under-five children admitted to paediatric wards at four secondary health facilities in Malawi. We used local and World Health Organization (WHO) guidelines to determine indications for LP, as these are widely used in low- and middle-income countries (LMIC). The intervention comprised of refresher trainings for facility staff on LP indications and procedure, use of automated reminders to perform LP in real time in the wards, with an electronic data management system, and addition of surveillance-specific clinical officers to support existing health facility staff with performing LPs. Due to the low numbers in the before/after analysis, we also performed a during/after analysis to supplement the findings. RESULTS: A total of 13,375 under-five children were hospitalised over the 21 months window for this analysis. The LP rate was 10.4% (12/115) and 60.4% (32/53) in the before/after analysis, respectively, and 43.8% (441/1006) and 72.5% (424/599) in the supplemental during/after analysis, respectively. In our intervention-specific analysis among the three individual components, there were improvements in the LP rate by 48% (p < 0.001) following the introduction of surveillance-specific clinical officers, 10% (p < 0.001) following the introduction of automated reminders to perform an LP and 13% following refresher training. CONCLUSIONS: This analysis demonstrated a rise in LP rates following our intervention. This intervention package may be considered for planning future facility-based meningitis surveillances in similar low-resource settings.


Asunto(s)
Meningitis , Punción Espinal , Humanos , Malaui/epidemiología , Punción Espinal/métodos , Lactante , Preescolar , Meningitis/diagnóstico , Meningitis/epidemiología , Masculino , Femenino , Instituciones de Salud , Recién Nacido , Vigilancia de Guardia
4.
Malar J ; 23(1): 27, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238806

RESUMEN

BACKGROUND: Though Plasmodium vivax is the second most common malaria species to infect humans, it has not traditionally been considered a major human health concern in central Africa given the high prevalence of the human Duffy-negative phenotype that is believed to prevent infection. Increasing reports of asymptomatic and symptomatic infections in Duffy-negative individuals throughout Africa raise the possibility that P. vivax is evolving to evade host resistance, but there are few parasite samples with genomic data available from this part of the world. METHODS: Whole genome sequencing of one new P. vivax isolate from the Democratic Republic of the Congo (DRC) was performed and used in population genomics analyses to assess how this central African isolate fits into the global context of this species. RESULTS: Plasmodium vivax from DRC is similar to other African populations and is not closely related to the non-human primate parasite P. vivax-like. Evidence is found for a duplication of the gene PvDBP and a single copy of PvDBP2. CONCLUSION: These results suggest an endemic P. vivax population is present in central Africa. Intentional sampling of P. vivax across Africa would further contextualize this sample within African P. vivax diversity and shed light on the mechanisms of infection in Duffy negative individuals. These results are limited by the uncertainty of how representative this single sample is of the larger population of P. vivax in central Africa.


Asunto(s)
Malaria Vivax , Malaria , Animales , Humanos , Plasmodium vivax/genética , Malaria Vivax/parasitología , África Central , Genómica , Sistema del Grupo Sanguíneo Duffy/genética
5.
Malar J ; 23(1): 183, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858696

RESUMEN

BACKGROUND: Plasmodium vivax malaria is a leading cause of morbidity in Ethiopia. The first-line treatment for P. vivax is chloroquine (CQ) and primaquine (PQ), but there have been local reports of CQ resistance. A clinical study was conducted to determine the efficacy of CQ for the treatment of P. vivax malaria in southern Ethiopia. METHODS: In 2021, patients with P. vivax mono-infection and uncomplicated malaria were enrolled and treated with 25 mg/kg CQ for 3 consecutive days. Patients were followed for 28 days according to WHO guidelines. The data were analysed using per-protocol (PP) and Kaplan‒Meier (K‒M) analyses to estimate the risk of recurrent P. vivax parasitaemia on day 28. RESULTS: A total of 88 patients were enrolled, 78 (88.6%) of whom completed the 28 days of follow-up. Overall, 76 (97.4%) patients had adequate clinical and parasitological responses, and two patients had late parasitological failures. The initial therapeutic response was rapid, with 100% clearance of asexual parasitaemia within 48 h. CONCLUSION: Despite previous reports of declining chloroquine efficacy against P. vivax, CQ retains high therapeutic efficacy in southern Ethiopia, supporting the current national treatment guidelines. Ongoing clinical monitoring of CQ efficacy supported by advanced molecular methods is warranted to inform national surveillance and ensure optimal treatment guidelines.


Asunto(s)
Antimaláricos , Cloroquina , Malaria Vivax , Malaria Vivax/tratamiento farmacológico , Cloroquina/uso terapéutico , Etiopía , Humanos , Antimaláricos/uso terapéutico , Masculino , Adulto , Femenino , Adolescente , Adulto Joven , Niño , Persona de Mediana Edad , Preescolar , Plasmodium vivax/efectos de los fármacos , Resultado del Tratamiento , Anciano , Parasitemia/tratamiento farmacológico
6.
Malar J ; 23(1): 150, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755607

RESUMEN

BACKGROUND: Emerging artemisinin partial resistance and diagnostic resistance are a threat to malaria control in Africa. Plasmodium falciparum kelch13 (k13) propeller-domain mutations that confer artemisinin partial resistance have emerged in Africa. k13-561H was initially described at a frequency of 7.4% from Masaka in 2014-2015, but not present in nearby Rukara. By 2018, 19.6% of isolates in Masaka and 22% of isolates in Rukara contained the mutation. Longitudinal monitoring is essential to inform control efforts. In Rukara, an assessment was conducted to evaluate recent k13-561H prevalence changes, as well as other key mutations. Prevalence of hrp2/3 deletions was also assessed. METHODS: Samples collected in Rukara in 2021 were genotyped for key artemisinin and partner drug resistance mutations using molecular inversion probe assays and for hrp2/3 deletions using qPCR. RESULTS: Clinically validated k13 artemisinin partial resistance mutations continue to increase in prevalence with the overall level of mutant infections reaching 32% in Rwanda. The increase appears to be due to the rapid emergence of k13-675V (6.4%, 6/94 infections), previously not observed, rather than continued expansion of 561H (23.5% 20/85). Mutations to partner drugs and other anti-malarials were variable, with high levels of multidrug resistance 1 (mdr1) N86 (95.5%) associated with lumefantrine decreased susceptibility and dihydrofolate reductase (dhfr) 164L (24.7%) associated with a high level of antifolate resistance, but low levels of amodiaquine resistance polymorphisms with chloroquine resistance transporter (crt) 76T: at 6.1% prevalence. No hrp2 or hrp3 gene deletions associated with diagnostic resistance were found. CONCLUSIONS: Increasing prevalence of artemisinin partial resistance due to k13-561H and the rapid expansion of k13-675V is concerning for the longevity of artemisinin effectiveness in the region. False negative RDT results do not appear to be an issue with no hrp2 or hpr3 deletions detected. Continued molecular surveillance in this region and surrounding areas is needed to follow artemisinin partial resistance and provide early detection of partner drug resistance, which would likely compromise control and increase malaria morbidity and mortality in East Africa.


Asunto(s)
Antimaláricos , Artemisininas , Resistencia a Medicamentos , Malaria Falciparum , Mutación , Plasmodium falciparum , Proteínas Protozoarias , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Artemisininas/farmacología , Antimaláricos/farmacología , Proteínas Protozoarias/genética , Resistencia a Medicamentos/genética , Rwanda , Malaria Falciparum/parasitología , Malaria Falciparum/epidemiología , Humanos , Antígenos de Protozoos/genética , Prevalencia , Niño , Adulto Joven , Adolescente , Adulto , Preescolar
7.
Malar J ; 23(1): 139, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720288

RESUMEN

BACKGROUND: In 2021 and 2023, the World Health Organization approved RTS,S/AS01 and R21/Matrix M malaria vaccines, respectively, for routine immunization of children in African countries with moderate to high transmission. These vaccines are made of Plasmodium falciparum circumsporozoite protein (PfCSP), but polymorphisms in the gene raise concerns regarding strain-specific responses and the long-term efficacy of these vaccines. This study assessed the Pfcsp genetic diversity, population structure and signatures of selection among parasites from areas of different malaria transmission intensities in Mainland Tanzania, to generate baseline data before the introduction of the malaria vaccines in the country. METHODS: The analysis involved 589 whole genome sequences generated by and as part of the MalariaGEN Community Project. The samples were collected between 2013 and January 2015 from five regions of Mainland Tanzania: Morogoro and Tanga (Muheza) (moderate transmission areas), and Kagera (Muleba), Lindi (Nachingwea), and Kigoma (Ujiji) (high transmission areas). Wright's inbreeding coefficient (Fws), Wright's fixation index (FST), principal component analysis, nucleotide diversity, and Tajima's D were used to assess within-host parasite diversity, population structure and natural selection. RESULTS: Based on Fws (< 0.95), there was high polyclonality (ranging from 69.23% in Nachingwea to 56.9% in Muheza). No population structure was detected in the Pfcsp gene in the five regions (mean FST = 0.0068). The average nucleotide diversity (π), nucleotide differentiation (K) and haplotype diversity (Hd) in the five regions were 4.19, 0.973 and 0.0035, respectively. The C-terminal region of Pfcsp showed high nucleotide diversity at Th2R and Th3R regions. Positive values for the Tajima's D were observed in the Th2R and Th3R regions consistent with balancing selection. The Pfcsp C-terminal sequences revealed 50 different haplotypes (H_1 to H_50), with only 2% of sequences matching the 3D7 strain haplotype (H_50). Conversely, with the NF54 strain, the Pfcsp C-terminal sequences revealed 49 different haplotypes (H_1 to H_49), with only 0.4% of the sequences matching the NF54 strain (Hap_49). CONCLUSIONS: The findings demonstrate high diversity of the Pfcsp gene with limited population differentiation. The Pfcsp gene showed positive Tajima's D values, consistent with balancing selection for variants within Th2R and Th3R regions. The study observed differences between the intended haplotypes incorporated into the design of RTS,S and R21 vaccines and those present in natural parasite populations. Therefore, additional research is warranted, incorporating other regions and more recent data to comprehensively assess trends in genetic diversity within this important gene. Such insights will inform the choice of alleles to be included in the future vaccines.


Asunto(s)
Plasmodium falciparum , Polimorfismo Genético , Proteínas Protozoarias , Selección Genética , Humanos , Enfermedades Endémicas , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Tanzanía
8.
J Infect Dis ; 228(6): 769-776, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37119236

RESUMEN

Congenital transmission of Trypanosoma cruzi is an important source of new Chagas infections worldwide. The mechanisms of congenital transmission remain poorly understood, but there is evidence that parasite factors are involved. Investigating changes in parasite strain diversity during transmission could provide insight into the parasite factors that influence the process. Here we use amplicon sequencing of a single copy T. cruzi gene to evaluate the diversity of infection in clinical samples from Chagas positive mothers and their infected infants. Several infants and mothers were infected with multiple parasite strains, mostly of the same TcV lineage, and parasite strain diversity was higher in infants than mothers. Two parasite haplotypes were detected exclusively in infant samples, while one haplotype was never found in infants. Together, these data suggest multiple parasites initiate a congenital infection and that parasite factors influence the probability of vertical transmission.


Asunto(s)
Enfermedad de Chagas , Parásitos , Trypanosoma cruzi , Femenino , Animales , Humanos , Lactante , Trypanosoma cruzi/genética , Enfermedad de Chagas/congénito , Madres , Transmisión Vertical de Enfermedad Infecciosa
9.
Emerg Infect Dis ; 29(6): 1143-1153, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37209670

RESUMEN

Achieving malaria elimination requires considering both Plasmodium falciparum and non-P. falciparum infections. We determined prevalence and geographic distribution of 4 Plasmodium spp. by performing PCR on dried blood spots collected within 8 regions of Tanzania during 2017. Among 3,456 schoolchildren, 22% had P. falciparum, 24% had P. ovale spp., 4% had P. malariae, and 0.3% had P. vivax infections. Most (91%) schoolchildren with P. ovale infections had low parasite densities; 64% of P. ovale infections were single-species infections, and 35% of those were detected in low malaria endemic regions. P. malariae infections were predominantly (73%) co-infections with P. falciparum. P. vivax was detected mostly in northern and eastern regions. Co-infections with >1 non-P. falciparum species occurred in 43% of P. falciparum infections. A high prevalence of P. ovale infections exists among schoolchildren in Tanzania, underscoring the need for detection and treatment strategies that target non-P. falciparum species.


Asunto(s)
Coinfección , Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Niño , Plasmodium falciparum/genética , Prevalencia , Tanzanía/epidemiología , Coinfección/epidemiología , Plasmodium malariae , Malaria/epidemiología , Malaria Falciparum/epidemiología , Malaria Falciparum/parasitología , Malaria Vivax/parasitología
10.
Antimicrob Agents Chemother ; 67(7): e0161022, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37314336

RESUMEN

Increasing reports of resistance to a frontline malaria blood-stage treatment, chloroquine (CQ), raises concerns for the elimination of Plasmodium vivax. The absence of an effective molecular marker of CQ resistance in P. vivax greatly constrains surveillance of this emerging threat. A recent genetic cross between CQ sensitive (CQS) and CQ resistant (CQR) NIH-1993 strains of P. vivax linked a moderate CQR phenotype with two candidate markers in P. vivax CQ resistance transporter gene (pvcrt-o): MS334 and In9pvcrt. Longer TGAAGH motif lengths at MS334 were associated with CQ resistance, as were shorter motifs at the In9pvcrt locus. In this study, high-grade CQR clinical isolates of P. vivax from a low endemic setting in Malaysia were used to investigate the association between the MS334 and In9pvcrt variants and treatment efficacy. Among a total of 49 independent monoclonal P. vivax isolates assessed, high-quality MS334 and In9pvcrt sequences could be derived from 30 (61%) and 23 (47%), respectively. Five MS334 and six In9pvcrt alleles were observed, with allele frequencies ranging from 2 to 76% and 3 to 71%, respectively. None of the clinical isolates had the same variant as the NIH-1993 CQR strain, and none of the variants were associated with CQ treatment failure (all P > 0.05). Multi-locus genotypes (MLGs) at 9 neutral microsatellites revealed a predominant P. vivax strain (MLG6) accounting for 52% of Day 0 infections. The MLG6 strain comprised equal proportions of CQS and CQR infections. Our study reveals complexity in the genetic basis of CQ resistance in the Malaysian P. vivax pre-elimination setting and suggests that the proposed pvcrt-o MS334 and In9pvcrt markers are not reliable markers of CQ treatment efficacy in this setting. Further studies are needed in other endemic settings, applying hypothesis-free genome-wide approaches, and functional approaches to understand the biological impact of the TGAAGH repeats linked to CQ response in a cross are warranted to comprehend and track CQR P. vivax.


Asunto(s)
Antimaláricos , Malaria Vivax , Humanos , Cloroquina/farmacología , Cloroquina/uso terapéutico , Plasmodium vivax/genética , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malasia , Resistencia a Medicamentos/genética , Malaria Vivax/epidemiología , Alelos , Proteínas Protozoarias/genética , Proteínas Protozoarias/uso terapéutico
11.
Sex Transm Dis ; 50(11): 753-759, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37824787

RESUMEN

BACKGROUND: Genital ulcer diseases (GUDs) are a common syndrome associated with sexually transmitted infections. Genital ulcer diseases increase the risk of HIV transmission, necessitating appropriate diagnosis and treatment. We provide an updated GUD etiology assessment in Malawi to guide diagnostic development and treatment algorithms. METHODS: We enrolled patients 18 years or older presenting with GUD at a sexually transmitted infection clinic in Lilongwe, Malawi, between May and October 2021. We purposively sampled by HIV status. Swabs of ulcers were tested for Treponema pallidum, herpes simplex virus (HSV)-1 and HSV-2, Haemophilus ducreyi, and Chlamydia trachomatis using polymerase chain reaction. Blood was collected for syphilis and HSV-2 serologies and acute HIV testing. Participants were treated per Malawi guidelines. Ulcer resolution (size reduced by >50%) was evaluated 14 days later. RESULTS: Fifty participants enrolled (30 without HIV, 2 with acute HIV infection, 18 with HIV seropositivity; 32 men, 18 women). Forty-six (92%) had an etiology identified. Syphilis was more common among those without HIV (22 of 30 [73%]) than participants with HIV (PWH; 8 of 20 [40%]; P = 0.04). Herpes simplex virus was more common among PWH (11 of 20 [55%]) than participants without (2 of 30 [7%]; P = 0.0002). One-fifth (9 of 50 [18%]) had H. ducreyi. Among those who returned for follow-up (n = 45), 9 (20%) had unresolved ulcers; persistent GUD was slightly more common in PWH (6 of 19 [32%]) than participants without (3 of 26 [12%]; P = 0.14). CONCLUSIONS: We observed a dramatic increase in syphilis ulcer proportion in a population whose GUDs were previously HSV predominant. Observed differences in etiology and resolution by HIV status could play an important role in the ongoing transmission and treatment evaluation of GUD.


Asunto(s)
Enfermedades de los Genitales Masculinos , Infecciones por VIH , Herpes Genital , Herpesvirus Humano 1 , Enfermedades de Transmisión Sexual , Sífilis , Masculino , Humanos , Femenino , Úlcera/epidemiología , Úlcera/etiología , Infecciones por VIH/complicaciones , Infecciones por VIH/epidemiología , Sífilis/complicaciones , Sífilis/epidemiología , Sífilis/diagnóstico , Malaui/epidemiología , Enfermedades de Transmisión Sexual/epidemiología , Herpesvirus Humano 2 , Genitales , Herpes Genital/complicaciones , Herpes Genital/epidemiología , Enfermedades de los Genitales Masculinos/etiología
12.
Malar J ; 22(1): 201, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393257

RESUMEN

BACKGROUND: Plasmodium vivax malaria is now recognized as a cause of severe morbidity and mortality, resulting in a substantial negative effect on health especially in endemic countries. Accurate and prompt diagnosis and treatment of P. vivax malaria is vital for the control and elimination of the disease. METHODS: A cross-sectional study was conducted from February 2021 to September 2022 at five malaria endemic sites in Ethiopia including Aribaminch, Shewarobit, Metehara, Gambella, and Dubti. A total of 365 samples that were diagnosed positive for P. vivax (mono and mixed infection) using RDT, site level microscopists and expert microscopists were selected for PCR. Statistical analyses were performed to calculate the proportions, agreement (k), frequencies, and ranges among different diagnostic methods. Fisher's exact tests and correlation test were used to detect associations and relationship between different variables. RESULTS: Of the 365 samples, 324 (88.8%), 37(10.1%), 2 (0.5%), and 2 (0.5%) were P. vivax (mono), P. vivax/Plasmodium falciparum (mixed), P. falciparum (mono) and negative by PCR, respectively. The overall agreement of rapid diagnostic test (RDT), site level microscopy and expert microscopists result with PCR was 90.41% (k: 0.49), 90.96% (k: 0.53), and 80.27% (k: 0.24). The overall prevalence of sexual (gametocyte) stage P. vivax in the study population was 215/361 (59.6%). The majority of these 215 samples (180; 83.7%) had below 1000 parasites/µl, with only four samples (1.9%) had ≥ 5000 parasites/µl. The gametocyte density was found to be weakly positive but statically significant with asexual parasitaemia (r = 0.31; p < 0.001). CONCLUSION: Both microscopy and RDT showed moderate agreement with PCR in the detection and identification of P. vivax (mono) and P. vivax/P. falciparum (mixed) infections. Therefore, to achieve malaria elimination goals, strengthening routine malaria diagnostic methods by implementing diagnostic tools with a good performance in detecting and accurately identifying malaria species in clinical settings is recommended.


Asunto(s)
Coinfección , Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Malaria Vivax/diagnóstico , Malaria Vivax/epidemiología , Plasmodium vivax/genética , Etiopía/epidemiología , Estudios Transversales , Microscopía , Malaria Falciparum/diagnóstico , Malaria Falciparum/epidemiología , Reacción en Cadena de la Polimerasa
13.
Malar J ; 22(1): 208, 2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37420265

RESUMEN

BACKGROUND: Understanding temporal and spatial dynamics of malaria transmission will help to inform effective interventions and strategies in regions approaching elimination. Parasite genomics are increasingly used to monitor epidemiologic trends, including assessing residual transmission across seasons and importation of malaria into these regions. METHODS: In a low and seasonal transmission setting of southern Zambia, a total of 441 Plasmodium falciparum samples collected from 8 neighbouring health centres between 2012 and 2018 were genotyped using molecular inversion probes (MIPs n = 1793) targeting a total of 1832 neutral and geographically informative SNPs distributed across the parasite genome. After filtering for quality and missingness, 302 samples and 1410 SNPs were retained and used for downstream population genomic analyses. RESULTS: The analyses revealed most (67%, n = 202) infections harboured one clone (monogenomic) with some variation at local level suggesting low, but heterogenous malaria transmission. Relatedness identity-by-descent (IBD) analysis revealed variable distribution of IBD segments across the genome and 6% of pairs were highly-related (IBD ≥ 0.25). Some of the highly-related parasite populations persisted across multiple seasons, suggesting that persistence of malaria in this low-transmission region is fueled by parasites "seeding" across the dry season. For recent years, clusters of clonal parasites were identified that were dissimilar to the general parasite population, suggesting parasite populations were increasingly fragmented at small spatial scales due to intensified control efforts. Clustering analysis using PCA and t-SNE showed a lack of substantial parasite population structure. CONCLUSION: Leveraging both genomic and epidemiological data provided comprehensive picture of fluctuations in parasite populations in this pre-elimination setting of southern Zambia over 7 years.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Plasmodium falciparum/genética , Malaria Falciparum/parasitología , Zambia/epidemiología , Análisis Espacial , Genómica
14.
BMC Infect Dis ; 23(1): 716, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872492

RESUMEN

BACKGROUND: RTS,S/AS01 has been recommended by WHO for widespread implementation in medium to high malaria transmission settings. Previous analyses have noted lower vaccine efficacies in higher transmission settings, possibly due to the more rapid development of naturally acquired immunity in the control group. METHODS: To investigate a reduced immune response to vaccination as a potential mechanism behind lower efficacy in high transmission areas, we examine initial vaccine antibody (anti-CSP IgG) response and vaccine efficacy against the first case of malaria (to exclude the effect of naturally acquired immunity) using data from three study areas (Kintampo, Ghana; Lilongwe, Malawi; Lambaréné, Gabon) from the 2009-2014 phase III trial (NCT00866619). Our key exposures are parasitemia during the vaccination series and background malaria incidence. We calculate vaccine efficacy (one minus hazard ratio) using a cox-proportional hazards model and allowing for the time-varying effect of RTS,S/AS01. RESULTS: We find that antibody responses to the primary three-dose vaccination series were higher in Ghana than in Malawi and Gabon, but that neither antibody levels nor vaccine efficacy against the first case of malaria varied by background incidence or parasitemia during the primary vaccination series. CONCLUSIONS: We find that vaccine efficacy is unrelated to infections during vaccination. Contributing to a conflicting literature, our results suggest that vaccine efficacy is also unrelated to infections before vaccination, meaning that control-group immunity is likely a major reason for lower efficacy in high transmission settings, not reduced immune responses to RTS,S/AS01. This may be reassuring for implementation in high transmission settings, though further studies are needed.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Humanos , Formación de Anticuerpos , Incidencia , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Parasitemia/epidemiología , Plasmodium falciparum , Vacunación , Ensayos Clínicos Fase III como Asunto
15.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37047683

RESUMEN

The seroprevalence of Kaposi sarcoma-associated herpesvirus (KSHV) and the incidence of endemic Kaposi sarcoma (KS) overlap with regions of malaria endemicity in sub-Saharan Africa. Multiple studies have shown an increased risk of KSHV seroconversion in children from high malaria compared to low malaria regions; however, the impact of acute episodes of Plasmodium falciparum (P. falciparum) malaria on KSHV's biphasic life cycle and lytic reactivation has not been determined. Here, we examined KSHV serological profiles and viral loads in 134 children with acute malaria and 221 healthy children from high malaria regions in Kisumu, as well as 77 healthy children from low malaria regions in Nandi. We assayed KSHV, Epstein-Barr virus (EBV), and P. falciparum malaria antibody responses in these three by multiplexed Luminex assay. We confirmed that KSHV seroprevalence was significantly associated with malaria endemicity (OR = 1.95, 1.18-3.24 95% CI, p = 0.01) with 71-77% seropositivity in high-malaria (Kisumu) compared to 28% in low-malaria (Nandi) regions. Furthermore, KSHV serological profiles during acute malaria episodes were distinct from age-matched non-malaria-infected children from the same region. Paired IgG levels also varied after malaria treatment, with significantly higher anti-ORF59 at day 0 but elevated ORF38, ORF73, and K8.1 at day 3. Acute malaria episodes is characterized by perturbation of KSHV latency in seropositive children, providing further evidence that malaria endemicity contributes to the observed increase in endemic KS incidence in sub-Saharan Africa.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 8 , Malaria Falciparum , Sarcoma de Kaposi , Niño , Humanos , Estudios Seroepidemiológicos , Herpesvirus Humano 4 , Malaria Falciparum/epidemiología
16.
J Infect Dis ; 225(2): 243-247, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34240175

RESUMEN

Chagas disease, caused by Trypanosoma cruzi, can reactivate and cause severe acute disease in immunocompromised patients such as those infected with human immunodeficiency virus (HIV). We conducted amplicon deep sequencing of a 327-bp fragment of the tcscd5 gene using an Ion Torrent PGM directly from clinical samples from HIV patients with high parasitemia. We describe the within-host diversity, both characterizing the discrete typing unit of the infections and confirming the presence of multistrain infections, directly from clinical samples. This method can rapidly provide information on the genetic diversity of T. cruzi infection, which can have direct impacts on clinical disease.


Asunto(s)
Enfermedad de Chagas/complicaciones , Infecciones por VIH/complicaciones , Trypanosoma cruzi/aislamiento & purificación , Coinfección , Variación Genética , VIH , Infecciones por VIH/sangre , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Trypanosoma cruzi/genética
17.
J Infect Dis ; 226(5): 920-927, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-35429395

RESUMEN

BACKGROUND: Genotyping Plasmodium falciparum subpopulations in malaria infections is an important aspect of malaria molecular epidemiology to understand within-host diversity and the frequency of drug resistance markers. METHODS: We characterized P. falciparum genetic diversity in asymptomatic infections and subsequent first febrile infections using amplicon sequencing (AmpSeq) of ama1 in Coastal Kenya. We also examined temporal changes in haplotype frequencies of mdr1, a drug-resistant marker. RESULTS: We found >60% of the infections were polyclonal (complexity of infection [COI] >1) and there was a reduction in COI over time. Asymptomatic infections had a significantly higher mean COI than febrile infections based on ama1 sequences (2.7 [95% confidence interval {CI}, 2.65-2.77] vs 2.22 [95% CI, 2.17-2.29], respectively). Moreover, an analysis of 30 paired asymptomatic and first febrile infections revealed that many first febrile infections (91%) were due to the presence of new ama1 haplotypes. The mdr1-YY haplotype, associated with chloroquine and amodiaquine resistance, decreased over time, while the NY (wild type) and the NF (modulates response to lumefantrine) haplotypes increased. CONCLUSIONS: This study emphasizes the utility of AmpSeq in characterizing parasite diversity as it can determine relative proportions of clones and detect minority clones. The usefulness of AmpSeq in antimalarial drug resistance surveillance is also highlighted.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Infecciones Asintomáticas , Resistencia a Medicamentos/genética , Humanos , Malaria/tratamiento farmacológico , Malaria Falciparum/parasitología , Plasmodium falciparum/genética , Proteínas Protozoarias/genética
18.
J Infect Dis ; 225(2): 257-268, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34244739

RESUMEN

BACKGROUND: Plasmodium falciparum malaria dominates throughout sub-Saharan Africa, but the prevalence of Plasmodium malariae, Plasmodium ovale spp., and Plasmodium vivax increasingly contribute to infection in countries that control malaria using P. falciparum-specific diagnostic and treatment strategies. METHODS: We performed quantitative polymerase chain reaction (qPCR) on 2987 dried blood spots from the 2015-2016 Malawi Demographic and Health Survey to identify presence and distribution of nonfalciparum infection. Bivariate models were used to determine species-specific associations with demographic and environmental risk factors. RESULTS: Nonfalciparum infections had broad spatial distributions. Weighted prevalence was 0.025 (SE, 0.004) for P. malariae, 0.097 (SE, 0.008) for P. ovale spp., and 0.001 (SE, 0.0005) for P. vivax. Most infections (85.6%) had low-density parasitemias ≤ 10 parasites/µL, and 66.7% of P. malariae, 34.6% of P. ovale spp., and 40.0% of P. vivax infections were coinfected with P. falciparum. Risk factors for P. malariae were like those known for P. falciparum; however, there were few risk factors recognized for P. ovale spp. and P. vivax, perhaps due to the potential for relapsing episodes. CONCLUSIONS: The prevalence of any nonfalciparum infection was 11.7%, with infections distributed across Malawi. Continued monitoring of Plasmodium spp. becomes critical as nonfalciparum infections become important sources of ongoing transmission.


Asunto(s)
Malaria/epidemiología , Plasmodium malariae/aislamiento & purificación , Plasmodium ovale/aislamiento & purificación , Plasmodium vivax/aislamiento & purificación , Adolescente , Adulto , Femenino , Humanos , Malaria/diagnóstico , Malaria Vivax/epidemiología , Malaui/epidemiología , Masculino , Plasmodium malariae/genética , Plasmodium ovale/genética , Plasmodium vivax/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Adulto Joven
19.
J Infect Dis ; 226(9): 1646-1656, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35899811

RESUMEN

BACKGROUND: RTS,S/AS01 is the first malaria vaccine to be approved and recommended for widespread implementation by the World Health Organization (WHO). Trials reported lower vaccine efficacies in higher-incidence sites, potentially due to a "rebound" in malaria cases in vaccinated children. When naturally acquired protection in the control group rises and vaccine protection in the vaccinated wanes concurrently, malaria incidence can become greater in the vaccinated than in the control group, resulting in negative vaccine efficacies. METHODS: Using data from the 2009-2014 phase III trial (NCT00866619) in Lilongwe, Malawi; Kintampo, Ghana; and Lambaréné, Gabon, we evaluate this hypothesis by estimating malaria incidence in each vaccine group over time and in varying transmission settings. After estimating transmission intensities using ecological variables, we fit models with 3-way interactions between vaccination, time, and transmission intensity. RESULTS: Over time, incidence decreased in the control group and increased in the vaccine group. Three-dose efficacy in the lowest-transmission-intensity group (0.25 cases per person-year [CPPY]) decreased from 88.2% to 15.0% over 4.5 years, compared with 81.6% to -27.7% in the highest-transmission-intensity group (3 CPPY). CONCLUSIONS: These findings suggest that interventions, including the fourth RTS,S dose, that protect vaccinated individuals during the potential rebound period should be implemented for high-transmission settings.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Niño , Humanos , Lactante , Malaria Falciparum/epidemiología , Ghana , Malaui , Gabón , Plasmodium falciparum
20.
Clin Infect Dis ; 74(12): 2191-2199, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34499116

RESUMEN

BACKGROUND: Malaria epidemics are a well-described phenomenon after extreme precipitation and flooding. Yet, few studies have examined mitigation measures to prevent post-flood malaria epidemics. METHODS: We evaluated a malaria chemoprevention program implemented in response to severe flooding in western Uganda. Children aged ≤12 years from 1 village were eligible to receive 3 monthly rounds of dihydroartemisinin-piperaquine (DP). Two neighboring villages served as controls. Malaria cases were defined as individuals with a positive rapid diagnostic test result as recorded in health center registers. We performed a difference-in-differences analysis to estimate changes in the incidence and test positivity of malaria between intervention and control villages. RESULTS: A total of 554 children received at least 1 round of chemoprevention, with 75% participating in at least 2 rounds. Compared with control villages, we estimated a 53.4% reduction (adjusted rate ratio [aRR], 0.47; 95% confidence interval [CI]: .34-.62; P < .01) in malaria incidence and a 30% decrease in the test positivity rate (aRR, 0.70; 95% CI: .50-.97; P = .03) in the intervention village in the 6 months post-intervention. The impact was greatest among children who received the intervention, but decreased incidence was also observed in older children and adults (aRR, 0.57; 95% CI: .38-.84; P < .01). CONCLUSIONS: Three rounds of chemoprevention with DP delivered under pragmatic conditions reduced the incidence of malaria after severe flooding in western Uganda. These findings provide a proof-of-concept for the use of malaria chemoprevention to reduce excess disease burden associated with severe flooding.


Asunto(s)
Antimaláricos , Artemisininas , Malaria , Adulto , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Quimioprevención , Niño , Inundaciones , Humanos , Incidencia , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Piperazinas , Quinolinas , Uganda/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA