Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
BMC Nephrol ; 19(1): 248, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30253743

RESUMEN

BACKGROUND: We recently reported on the enhanced tubular expression of two discrete isoforms of the MMP-2 (full length and N-terminal truncated, FL-MMP-2, NTT-MMP-2) in a murine model and human diabetic kidneys. In the present study, we examined in more detail the temporal and spatial distributions of MMP-2 isoform expression in murine models of Type 1 and Type 2 diabetes mellitus. METHODS: Diabetic models were streptozotocin (STZ)-induced diabetes (Type 1 diabetes mellitus) and db/db mice (Type 2 diabetes mellitus). We quantified the abundance of two isoforms of MMP-2 transcripts by qPCR. A spatial distribution of two isoforms of MMP-2 was analyzed semi-quantitatively according to time after injection of STZ and with increasing age of db/db mice. Furthermore, immunohistochemistry for nitrotyrosine was performed to examine a potential association between oxidative stress and MMP-2 isoform expression. RESULTS: Both isoforms of MMP-2 were upregulated in whole kidneys from STZ and db/db mice. In the case of FL-MMP-2, mRNA levels significantly increased at 12 and 24 weeks in STZ mice, while the isoform expression was significantly increased only at 16 weeks, in the db/db mice. FL-MMP-2 protein levels increased in the cortices and outer medullae of both STZ and db/db mice as a function of the duration of diabetes. For NTT-MMP-2, mRNA levels increased earlier at 4 weeks in STZ mice and at 10 weeks of age in db/db mice. The expression of NTT-MMP-2 also increased, primarily in the cortices of STZ and db/db mice, as a function of the duration of diabetes. Quantitatively, these findings were consistent with the qPCR results in the case of NTT-MMP-2, respectively (STZ 24 weeks, 3.24 ± 3.70 fold; 16 weeks db/db, 4.49 ± 0.55 fold). In addition, nitrotyrosine was expressed primarily in cortex as compared to medulla as a function of the duration of diabetes similar to NTT-MMP-2 expression. CONCLUSIONS: Two isoforms of MMP-2 are highly inducible in two diabetic murine models and become more abundant as a function of time. As the expression patterns were not the same in the two isoforms of MMP-2, it is possible that each isoform has a discrete role in the development of diabetic renal injury.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Riñón/metabolismo , Metaloproteinasa 2 de la Matriz/metabolismo , Animales , Modelos Animales de Enfermedad , Isoenzimas/metabolismo , Corteza Renal/metabolismo , Médula Renal/metabolismo , Túbulos Renales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tirosina/análogos & derivados , Tirosina/metabolismo , Regulación hacia Arriba
2.
Kidney Res Clin Pract ; 37(3): 222-229, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30254846

RESUMEN

BACKGROUND: This study was undertaken to explore the effects of aging on the kidneys in mouse models of diabetes and chronic kidney disease (CKD), and to compare the expression of two isoforms of matrix metalloproteinase-2 (MMP-2)-secretory full-length MMP-2 and intracellular N-terminal truncated MMP-2 (NTT-MMP-2)-in these models. METHODS: Two experimental ICR mouse models were used: a streptozotocin (STZ)-induced type 1 diabetes mellitus model and a 5/6 nephrectomized (5/6Nx) CKD model. The abundance of each isoform of MMP-2 was determined by quantitative polymerase chain reaction (qPCR), and functional analyses were conducted. Moreover, the protein levels of the two MMP-2 isoforms were determined semi-quantitatively by immunohistochemical staining, and their association with tissue damage was assessed. RESULTS: Both isoforms of MMP-2 were upregulated in the kidney tissues of STZ-induced diabetic mice and 5/6Nx mice, irrespective of age. Characteristically, NTT-MMP-2 protein expression was elevated in old control mice, in line with the qPCR results. NTT-MMP-2 expression was limited to the renal cortex, and to the tubulointerstitial area rather than the glomerular area. In terms of tissue damage, tubulointerstitial fibrosis was more severe in old 5/6Nx mice than in their young counterparts, whereas glomerulosclerosis was comparable in old and young 5/6Nx mice. CONCLUSION: The intracellular isoform of MMP-2 was induced by ageing, irrespective of the presence of diabetes or CKD, and its induction may be related to tubulointerstitial fibrosis in chronic kidney disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA