Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neuroinflammation ; 19(1): 96, 2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35429976

RESUMEN

BACKGROUND: Elevated production of the cytokines interleukin (IL)-6 or interferon (IFN)-α in the central nervous system (CNS) is implicated in the pathogenesis of neurological diseases such as neuromyelitis optica spectrum disorders or cerebral interferonopathies, respectively. Transgenic mice with CNS-targeted chronic production of IL-6 (GFAP-IL6) or IFN-α (GFAP-IFN) recapitulate important clinical and pathological features of these human diseases. The activation of microglia is a prominent manifestation found both in the human diseases and in the transgenic mice, yet little is known about how this contributes to disease pathology. METHODS: Here, we used a combination of ex vivo and in situ techniques to characterize the molecular, cellular and transcriptomic phenotypes of microglia in GFAP-IL6 versus GFAP-IFN mice. In addition, a transcriptomic meta-analysis was performed to compare the microglia response from GFAP-IL6 and GFAP-IFN mice to the response of microglia in a range of neurodegenerative and neuroinflammatory disorders. RESULTS: We demonstrated that microglia show stimulus-specific responses to IL-6 versus IFN-α in the brain resulting in unique and extensive molecular and cellular adaptations. In GFAP-IL6 mice, microglia proliferated, had shortened, less branched processes and elicited transcriptomic and molecular changes associated with phagocytosis and lipid processing. In comparison, microglia in the brain of GFAP-IFN mice exhibited increased proliferation and apoptosis, had larger, hyper-ramified processes and showed transcriptomic and surface marker changes associated with antigen presentation and antiviral response. Further, a transcriptomic meta-analysis revealed that IL-6 and IFN-α both contribute to the formation of a core microglia response in animal models of neurodegenerative and neuroinflammatory disorders, such as Alzheimer's disease, tauopathy, multiple sclerosis and lipopolysaccharide-induced endotoxemia. CONCLUSIONS: Our findings demonstrate that microglia responses to IL-6 and IFN-α are highly stimulus-specific, wide-ranging and give rise to divergent phenotypes that modulate microglia responses in neuroinflammatory and neurodegenerative diseases.


Asunto(s)
Interleucina-6 , Microglía , Animales , Citocinas , Interferón-alfa , Ratones , Ratones Transgénicos , Fenotipo
2.
PLoS Pathog ; 16(4): e1008525, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32310998

RESUMEN

Signal transducers and activators of transcription (STAT) 1 is critical for cellular responses to type I interferons (IFN-Is), with the capacity to determine the outcome of viral infection. We previously showed that while wildtype (WT) mice develop mild disease and survive infection with lymphocytic choriomeningitis virus (LCMV), LCMV infection of STAT1-deficient mice results in a lethal wasting disease that is dependent on IFN-I and CD4+ cells. IFN-Is are considered to act as a bridge between innate and adaptive immunity. Here, we determined the relative contribution of STAT1 on innate and adaptive immunity during LCMV infection. We show that STAT1 deficiency results in a biphasic disease following LCMV infection. The initial, innate immunity-driven phase of disease was characterized by rapid weight loss, thrombocytopenia, systemic cytokine and chemokine responses and leukocyte infiltration of infected organs. In the absence of an adaptive immune response, this first phase of disease largely resolved resulting in survival of the infected host. However, in the presence of adaptive immunity, the disease progressed into a second phase with continued cytokine and chemokine production, persistent leukocyte extravasation into infected tissues and ultimately, host death. Overall, our findings demonstrate the key contribution of STAT1 in modulating innate and adaptive immunity during type I interferon-mediated lethal virus infection.


Asunto(s)
Coriomeningitis Linfocítica/inmunología , Inmunidad Adaptativa/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción STAT1/inmunología , Factor de Transcripción STAT1/metabolismo , Transducción de Señal , Virosis/inmunología , Replicación Viral
3.
J Immunol ; 201(7): 2176-2186, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30143586

RESUMEN

Anti-CD4 or anti-CD8α Ab-mediated depletion strategies are widely used to determine the role of T cell subsets. However, surface expression of CD4 and CD8α is not limited to T cells and occurs on other leukocyte populations as well. Using both unbiased t-distributed stochastic neighbor embedding of flow cytometry data and conventional gating strategies, we assessed the impact of anti-CD4 and anti-CD8α Ab-mediated depletion on non-T cell populations in mice. Our results show that anti-CD4 and anti-CD8α Ab injections not only resulted in depletion of T cells but also led to depletion of specific dendritic cell subsets in a dose-dependent manner. Importantly, the extent of this effect varied between mock- and virus-infected mice. We also demonstrate the importance of using a second, noncompeting Ab (clone CT-CD8α) to detect CD8α+ cells following depletion with anti-CD8α Ab clone 2.43. Our study provides a necessary caution to carefully consider the effects on nontarget cells when using Ab injections for leukocyte depletion in all experimental conditions.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Citometría de Flujo/métodos , Leucocitos Mononucleares/fisiología , Linfocitos T/fisiología , Virosis/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos CD4/inmunología , Antígenos CD8/inmunología , Células Cultivadas , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL
4.
J Neuroinflammation ; 16(1): 177, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511023

RESUMEN

BACKGROUND: Until the end of the twentieth century, Zika virus (ZIKV) was thought to cause a mostly mild, self-limiting disease in humans. However, as the geographic distribution of ZIKV has shifted, so too has its pathogenicity. Modern-day ZIKV infection is now known to cause encephalitis, acute disseminated encephalomyelitis, and Guillain-Barré syndrome in otherwise healthy adults. Nevertheless, the underlying pathogenetic mechanisms responsible for this shift in virulence remain unclear. METHODS: Here, we investigated the contribution of the innate versus the adaptive immune response using a new mouse model involving intracranial infection of adult immunocompetent mice with a moderately low dose of ZIKV MR766. To determine the contribution of type I interferons (IFN-Is) and adaptive immune cells, we also studied mice deficient for the IFN-I receptor 1 (Ifnar1-/-) and recombination-activating gene 1 (Rag1-/-). RESULTS: We show that intracranial infection with ZIKV resulted in lethal encephalitis. In wild-type mice, ZIKV remained restricted predominantly to the central nervous system (CNS) and infected neurons, whereas astrocytes and microglia were spared. Histological and molecular analysis revealed prominent activation of resident microglia and infiltrating monocytes that were accompanied by an expression of pro-inflammatory cytokines. The disease was independent of T and B cells. Importantly, unlike peripheral infection, IFN-Is modulated but did not protect from infection and lethal disease. Lack of IFN-I signaling resulted in spread of the virus, generalized inflammatory changes, and accelerated disease onset. CONCLUSIONS: Using intracranial infection of immunocompetent wild-type mice with ZIKV, we demonstrate that in contrast to the peripheral immune system, the CNS is susceptible to infection and responds to ZIKV by initiating an antiviral immune response. This response is dominated by resident microglia and infiltrating monocytes and macrophages but does not require T or B cells. Unlike in the periphery, IFN-Is in the CNS cannot prevent the establishment of infection. Our findings show that ZIKV encephalitis in mice is dependent on the innate immune response, and adaptive immune cells play at most a minor role in disease pathogenesis.


Asunto(s)
Encefalitis Viral/inmunología , Inmunidad Innata/inmunología , Infección por el Virus Zika/inmunología , Animales , Linfocitos B/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Linfocitos T/inmunología , Virus Zika/inmunología
5.
J Biol Chem ; 292(14): 5845-5859, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28213522

RESUMEN

Type I interferons (IFN-I) are critical in antimicrobial and antitumor defense. Although IFN-I signal via the interferon-stimulated gene factor 3 (ISGF3) complex consisting of STAT1, STAT2, and IRF9, IFN-I can mediate significant biological effects via ISGF3-independent pathways. For example, the absence of STAT1, STAT2, or IRF9 exacerbates neurological disease in transgenic mice with CNS production of IFN-I. Here we determined the role of IFN-I-driven, ISGF3-independent signaling in regulating global gene expression in STAT1-, STAT2-, or IRF9-deficient murine mixed glial cell cultures (MGCs). Compared with WT, the expression of IFN-α-stimulated genes (ISGs) was reduced in number and magnitude in MGCs that lacked STAT1, STAT2, or IRF9. There were significantly fewer ISGs in the absence of STAT1 or STAT2 versus in the absence of IRF9. The majority of ISGs regulated in the STAT1-, STAT2-, or IRF9-deficient MGCs individually were shared with WT. However, only a minor number of ISGs were common to WT and STAT1-, STAT2-, and IRF9-deficient MGCs. Whereas signal pathway activation in response to IFN-α was rapid and transient in WT MGCs, this was delayed and prolonged and correlated with increased numbers of ISGs expressed at 12 h versus 4 h of IFN-α exposure in all three IFN-I signaling-deficient MGCs. In conclusion, 1) IFN-I can mediate ISG expression in MGCs via ISGF3-independent signaling pathways but with reduced efficiency, with delayed and prolonged kinetics, and is more dependent on STAT1 and STAT2 than IRF9; and 2) signaling pathways not involving STAT1, STAT2, or IRF9 play a minor role only in mediating ISG expression in MGCs.


Asunto(s)
Regulación de la Expresión Génica/efectos de los fármacos , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/metabolismo , Interferón-alfa/farmacología , Neuroglía/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT2/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Factor 3 de Genes Estimulados por el Interferón/genética , Factor 3 de Genes Estimulados por el Interferón/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Ratones , Ratones Noqueados , Neuroglía/citología , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT2/genética
6.
J Virol ; 91(22)2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-28878077

RESUMEN

Effective CD8+ T cell responses play an important role in determining the course of a viral infection. Overwhelming antigen exposure can result in suboptimal CD8+ T cell responses, leading to chronic infection. This altered CD8+ T cell differentiation state, termed exhaustion, is characterized by reduced effector function, upregulation of inhibitory receptors, and altered expression of transcription factors. Prevention of overwhelming antigen exposure to limit CD8+ T cell exhaustion is of significant interest for the control of chronic infection. The transcription factor interferon regulatory factor 9 (IRF9) is a component of type I interferon (IFN-I) signaling downstream of the IFN-I receptor (IFNAR). Using acute infection of mice with lymphocytic choriomeningitis virus (LCMV) strain Armstrong, we show here that IRF9 limited early LCMV replication by regulating expression of interferon-stimulated genes and IFN-I and by controlling levels of IRF7, a transcription factor essential for IFN-I production. Infection of IRF9- or IFNAR-deficient mice led to a loss of early restriction of viral replication and impaired antiviral responses in dendritic cells, resulting in CD8+ T cell exhaustion and chronic infection. Differences in the antiviral activities of IRF9- and IFNAR-deficient mice and dendritic cells provided further evidence of IRF9-independent IFN-I signaling. Thus, our findings illustrate a CD8+ T cell-extrinsic function for IRF9, as a signaling factor downstream of IFNAR, in preventing overwhelming antigen exposure resulting in CD8+ T cell exhaustion and, ultimately, chronic infection.IMPORTANCE During early viral infection, overwhelming antigen exposure can cause functional exhaustion of CD8+ T cells and lead to chronic infection. Here we show that the transcription factor interferon regulatory factor 9 (IRF9) plays a decisive role in preventing CD8+ T cell exhaustion. Using acute infection of mice with LCMV strain Armstrong, we found that IRF9 limited early LCMV replication by regulating expression of interferon-stimulated genes and Irf7, encoding a transcription factor crucial for type I interferon (IFN-I) production, as well as by controlling the levels of IFN-I. Infection of IRF9-deficient mice led to a chronic infection that was accompanied by CD8+ T cell exhaustion due to defects extrinsic to T cells. Our findings illustrate an essential role for IRF9, as a mediator downstream of IFNAR, in preventing overwhelming antigen exposure causing CD8+ T cell exhaustion and leading to chronic viral infection.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Transducción de Señal/inmunología , Enfermedad Aguda , Animales , Linfocitos T CD8-positivos/patología , Enfermedad Crónica , Factor 7 Regulador del Interferón , Interferón Tipo I/genética , Interferón Tipo I/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/genética , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/genética , Ratones , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Transducción de Señal/genética
7.
J Virol ; 88(13): 7578-88, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24760883

RESUMEN

UNLABELLED: Following systemic infection with lymphocytic choriomeningitis virus (LCMV), STAT1 knockout (KO) mice but not wild-type, STAT2 KO, IRF9 KO, or IFNAR KO mice develop lethal disease perpetrated by CD4(+) T cells. IRF7 is a key transcriptional activator of type I IFN (IFN-I) during LCMV infection. Here, the role of IRF7 in the lethal host response to LCMV infection in STAT1 KO mice was examined. In contrast to STAT1 KO mice, STAT1/IRF7 double KO (DKO) mice survived LCMV infection with a reduced immune pathology in key organs, such as the liver and spleen. However, similar to STAT1 KO mice, STAT1/IRF7 DKO mice failed to control LCMV replication and spread. LCMV infection in STAT1 KO mice was associated with a significant elevation in the levels of a number of cytokines in serum, including IFN-Is, but this was largely absent in STAT1/IRF7 DKO mice, which had a modest increase in the levels of gamma interferon and CCL2 only. Since IRF7 is known to be a key transcriptional regulator of IFN-I gene expression, the possible role of IFN-I in lethal disease was examined further. STAT1/IFNAR DKO mice, in contrast to STAT1 KO mice, all survived infection with LCMV and exhibited little tissue immune pathology. Additionally, STAT1 KO mice that were deficient for either of the two IFN-I signaling molecules, STAT2 or IRF9, also survived LCMV infection. We conclude that the lethal immune-mediated disease resulting from LCMV infection in STAT1 KO mice is (i) dependent on IRF7-induced IFN-I production and (ii) driven by noncanonical IFN-I signaling via STAT2 and IRF9. IMPORTANCE: Here we report on the basis for the novel, fatal immune-mediated disease of STAT1 KO mice infected with LCMV. Our findings show that, surprisingly, the pathogenesis of this disease is dependent on IRF7-mediated type I interferon production. Moreover, our study identifies noncanonical type I interferon signaling via STAT2 and IRF9 to be essential for the type I IFN-driven fatal disease in LCMV-infected STAT1 KO mice. These results further highlight the significance of noncanonical type I IFN signaling in the pathogenesis of host-mediated injury following viral infection.


Asunto(s)
Genes Letales/inmunología , Interferón Tipo I/metabolismo , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/fisiología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/fisiología , Factor de Transcripción STAT1/fisiología , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/virología , Ensayo de Inmunoadsorción Enzimática , Femenino , Coriomeningitis Linfocítica/mortalidad , Coriomeningitis Linfocítica/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tasa de Supervivencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA