RESUMEN
PURPOSE: Post-COVID-19-Syndrome (PCS) frequently occurs after an infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). However, the understanding of causative mechanisms is still limited. Aim of this study was to determine the PCS rate among SARS-CoV-2 seropositive blood donors as representatives of supposedly healthy adults, who had experienced an asymptomatic or mild COVID-19 disease course, and to examine whether Epstein-Barr virus (EBV) is reactivated in individuals reporting PCS. METHODS: The PCS rate was determined using questionnaires that included questions about infection and persistent symptoms. Pre-pandemic blood samples and samples collected at regular, pre-defined times after a SARS-CoV-2 infection were analysed for neopterin, a marker for antiviral immune responses, by an enzyme-linked immunosorbent assay (ELISA). Additionally, we determined the rate of SARS-CoV-2 anti-N total antibodies using an electrochemiluminescence immunoassay (ECLIA). Furthermore, quantitative real-time polymerase chain reaction (qPCR) to detect EBV DNA and ECLIA screening for EBV viral capsid-antigen (VCA) IgM, IgG and EBV nuclear antigen 1 (EBNA) IgG were performed. RESULTS: Our data reveal that 18% of all infections result in PCS, with symptoms lasting for up to one year. In individuals reporting PCS, no elevated levels of neopterin were detected, indicating no persisting pro-inflammatory, antiviral immune response. SARS-CoV-2 antibody levels were declining in all participants in comparable manner over time, pointing to a successful virus clearance. In individuals with PCS, no EBV DNA could be detected. Furthermore, no differences in EBV specific antibody levels could be shown in PCS groups compared to non-PCS groups. CONCLUSION: Our data suggest that PCS in per se healthy, immunocompetent adults cannot be ascribed to a reactivation of EBV.
Asunto(s)
COVID-19 , Infecciones por Virus de Epstein-Barr , Adulto , Humanos , Herpesvirus Humano 4 , Infecciones por Virus de Epstein-Barr/diagnóstico , SARS-CoV-2/genética , Antígenos Virales , Neopterin , Anticuerpos Antivirales , Inmunoglobulina M , Inmunoglobulina G , ADNRESUMEN
OBJECTIVES: The WHO's standardized measuring unit, "binding antibody units per milliliter (BAU/mL)," should allow the harmonization of quantitative results by different commercial Anti-SARS-CoV-2 immunoassays. However, multiple studies demonstrate inter-assay discrepancies. The antigenic changes of the Omicron variant affect the performance of Spike-specific immunoassays. This study evaluated the variation of quantitative Anti-SARS-CoV-2-Spike antibody measurements among 46, 50, and 44 laboratories in three rounds of a national external quality assessment (EQA) prior to and after the emergence of the Omicron variant in a diagnostic near-to-real-life setting. METHODS: We analyzed results reported by the EQA participant laboratories from single and sequential samples from SARS-CoV-2 convalescent, acutely infected, and vaccinated individuals, including samples obtained after primary and breakthrough infections with the Omicron variant. RESULTS: The three immunoassays most commonly used by the participants displayed a low intra-assay and inter-laboratory variation with excellent reproducibility using identical samples sent to the participants in duplicates. In contrast, the inter-assay variation was very high with all samples. Notably, the ratios of BAU/mL levels quantified by different immunoassays were not equal among all samples but differed between vaccination, past, and acute infection, including primary infection with the Omicron variant. The antibody kinetics measured in vaccinated individuals strongly depended on the applied immunoassay. CONCLUSIONS: Measured BAU/mL levels are only inter-changeable among different laboratories when the same assay was used for their assessment. Highly variable ratios of BAU/mL quantifications among different immunoassays and infection stages argue against the usage of universal inter-assay conversion factors.
Asunto(s)
COVID-19 , Humanos , Reproducibilidad de los Resultados , COVID-19/diagnóstico , SARS-CoV-2 , Anticuerpos Antivirales , Anticuerpos NeutralizantesRESUMEN
BACKGROUND: Transfusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) convalescent plasma is a promising treatment for severe coronavirus disease 2019 (COVID-19) cases, with success of the intervention based on neutralizing antibody content. Measurement by serologic correlates without biocontainment needs as well as an understanding of donor characteristics that may allow for targeting of more potent donors would greatly facilitate effective collection. STUDY DESIGN AND METHODS: One hundred convalescent plasma units were characterized for functionally active SARS-CoV-2 neutralizing antibodies, as well as for SARS-CoV-2 binding antibodies, with the intention to establish a correlation between the functionally more relevant neutralization assay and the more accessible enzyme-linked immunosorbent assay (ELISA). Donor demographics such as COVID-19 severity, age, and sex were correlated with antibody titers. RESULTS: A mean neutralization titer 50% of 230 (range, <8-1765) was seen for the 100 convalescent plasma units, with highly significant (P < .0001) yet quantitatively limited (R2 = 0.2830) correlation with results of the ELISA. Exclusion of units with particularly high titers (>500) from analysis improved correlation (R2 = 0.5386). A tendency of higher-titer plasma units from donors with increased disease severity, of advanced age, and of male sex was seen, yet the functional relevance of this difference is questionable. CONCLUSION: The ELISA-based correlation to neutralization titer enabled a threshold proposal that could be used to eliminate lower-titer units from the clinical supply for COVID-19 treatment. Disease severity may be associated with the development of higher titers of neutralizing antibodies, although larger case numbers will be needed for additional confirmation.
Asunto(s)
COVID-19/terapia , COVID-19/virología , SARS-CoV-2/patogenicidad , Donantes de Sangre , COVID-19/inmunología , Ensayo de Inmunoadsorción Enzimática , Humanos , Inmunización Pasiva/métodos , SARS-CoV-2/inmunología , Sueroterapia para COVID-19RESUMEN
PURPOSE: Frequently the infection with coronavirus 2 (SARS-CoV-2) can be asymptomatic or provoke only mild symptoms. These cases often remain unnoticed, so it is difficult to estimate the actual numbers of infections. Aim of this study was to determine the seroprevalence of anti-SARS-CoV-2 total antibody in Austrian blood donors. METHODS: 20,228 blood donors aged between 18 and 72 years resident in four Austrian federal states were screened for anti-SARS-CoV-2 total antibody between 5th of June and 4th of December 2020. To evaluate the impact of sex, age, AB0-blood group and donation period on the anti-SARS-CoV-2 seroprevalence, multiple logistic regression was done. RESULTS: Our data reveal an anti-SARS-CoV-2 seroprevalence of 2.5% overall, significantly depending on the time point of blood donation: after the first Austrian lockdown the seroprevalence was lower compared to the following months, when the rate was constantly rising. While younger blood donors showed significantly higher seroprevalence, no differences were found concerning sex or AB0 blood group. CONCLUSION: Broad testing strategies are required to better determine the number of SARS-CoV-2 infections. Screening blood donors as a representative group for the adult population could be a valid tool to determine the number of recorded and unrecorded cases of SARS-CoV-2 infection.
Asunto(s)
Donantes de Sangre , COVID-19 , Adolescente , Adulto , Anciano , Anticuerpos Antivirales , Austria/epidemiología , Control de Enfermedades Transmisibles , Humanos , Persona de Mediana Edad , SARS-CoV-2 , Estudios Seroepidemiológicos , Adulto JovenRESUMEN
INTRODUCTION: Antibody-mediated transfusion-related acute lung injury (TRALI) is caused by antibodies against human leukocyte antigens (HLAs) or human neutrophil antigens (HNAs), and is one of the most serious complications associated with transfusion medicine. Prevention strategies like testing allo-exposed female blood donors have not yet been introduced nationwide in Austria. To assess the need and feasibility of routine leukocyte antibody testing, the prevalence of leukocyte-reactive antibodies in an Austrian female donor population was been determined using classical cell-based methods which were compared with a high-throughput bead-based method. METHODS: Sera from 1,022 female blood donors were screened using a granulocyte aggregation test (GAT) and a white blood cell immunofluorescence test (WIFT) after retesting and specification of positive samples by granulocyte immunofluorescence test (GIFT) and monoclonal antibody-specific immobilization of granulocyte antigens (MAIGA). Potential HLA reactivities were confirmed using the microbeads assay LabScreenTM Mixed. The results in 142 donor sera and 38 well-defined reference sera were investigated by the microbeads assay LabScreenTM Multi and compared with classical cell-based methods. RESULTS: Reactivity with either granulocytes and/or lymphocytes was detected in 79 sera (7.7%), with the majority being HLA-specific. Antibodies against HNA were obtained in 7 samples (0.7%). The aggregating potential of the detected antibodies was observed in 9 cases (0.9%). Most of the leukocyte-reactive antibodies occurred at a donor age of between 35 and 59 years (n = 61). LabScreen Multi showed good agreement (κ = 0.767) for HNA antibody detection by cell-based assays, but double/multiple specificities (100% of 7 anti-HNA-1b sera) as well as false-negative results (40% of 15 HNA-3-specific sera) occurred. DISCUSSION: Leukocyte-reactive antibody screening is advised in Austrian female donors for safe blood transfusion, including single-donor convalescent plasma treatment of COVID-19 that may be implemented soon. For the introduction of LabScreen Multi, the combination with GAT should be considered to ensure correct anti-HNA-3a detection.
RESUMEN
The U antigen (MNS5) is one of 49 antigens belonging to the MNS blood group system (ISBT002) carried on glycophorins A (GPA) and B (GPB). U is present on the red blood cells in almost all Europeans and Asians but absent in approximately 1.0% of Black Africans. U negativity coincides with negativity for S (MNS3) and s (MNS4) on GPB, thus be called S-s-U-, and is thought to arise from homozygous deletion of GYPB. Little is known about the molecular background of these deletions. Bioinformatic analysis of the 1000 Genomes Project data revealed several candidate regions with apparent deletions in GYPB. Highly specific Gap-PCRs, only resulting in positive amplification from DNAs with deletions present, allowed for the exact genetic localization of 3 different breakpoints; 110.24- and 103.26-kb deletions were proven to be the most frequent in Black Americans and Africans. Among 157 CEPH DNAs, deletions in 6 out of 8 African ethnicities were present. Allele frequencies of the deletions within African ethnicities varied greatly and reached a cumulative 23.3% among the Mbuti Pygmy people from the Congo. Similar observations were made for U+var alleles, known to cause strongly reduced GPB expression. The 110- and 103-kb deletional GYPB haplotypes were found to represent the most prevalent hereditary factors causative of the MNS blood group phenotype S-s-U-. Respective GYPB deletions are now accessible by molecular detection of homo- and hemizygous transmission.
RESUMEN
West Nile virus (WNV) and Usutu virus (USUV) circulate in several European Union (EU) countries. The risk of transfusion-transmitted West Nile virus (TT-WNV) has been recognized, and preventive blood safety measures have been implemented. We summarized the applied interventions in the EU countries and assessed the safety of the blood supply by compiling data on WNV positivity among blood donors and on reported TT-WNV cases. The paucity of reported TT-WNV infections and the screening results suggest that blood safety interventions are effective. However, limited circulation of WNV in the EU and presumed underrecognition or underreporting of TT-WNV cases contribute to the present situation. Because of cross-reactivity between genetically related flaviviruses in the automated nucleic acid test systems, USUV-positive blood donations are found during routine WNV screening. The clinical relevance of USUV infection in humans and the risk of USUV to blood safety are unknown.
Asunto(s)
Donantes de Sangre , Seguridad de la Sangre , Unión Europea , Infecciones por Flavivirus/epidemiología , Flavivirus , Fiebre del Nilo Occidental/epidemiología , Virus del Nilo Occidental , Transfusión Sanguínea , Enfermedades Transmisibles Emergentes/epidemiología , Europa (Continente)/epidemiología , Infecciones por Flavivirus/prevención & control , Infecciones por Flavivirus/transmisión , Infecciones por Flavivirus/virología , Humanos , Incidencia , Vigilancia en Salud Pública , Fiebre del Nilo Occidental/prevención & control , Fiebre del Nilo Occidental/transmisión , Fiebre del Nilo Occidental/virologíaRESUMEN
Between 28 June and 17 September 2018, 27 cases of human West Nile virus infections were recorded in Austria; four cases of West Nile neuroinvasive disease, 11 cases of West Nile fever, six infections detected by blood donation screening and six imported cases. In addition, 18 cases of human Usutu virus infections (all blood donors) were recorded. This is the highest number of annual infections recorded in Austria since the introduction of both viruses.
Asunto(s)
Notificación de Enfermedades , Infecciones por Flavivirus/diagnóstico , Flavivirus/aislamiento & purificación , Fiebre del Nilo Occidental/diagnóstico , Virus del Nilo Occidental/aislamiento & purificación , Austria/epidemiología , Infecciones por Flavivirus/epidemiología , Humanos , Fiebre del Nilo Occidental/epidemiologíaRESUMEN
Between July and August 2017, seven of 12,047 blood donations from eastern Austria, reacted positive to West Nile virus (WNV) in the cobas test (Roche). Follow-up investigations revealed Usutu virus (USUV) nucleic acid in six of these. Retrospective analyses of four blood donors diagnosed as WNV-infected in 2016 showed one USUV positive. Blood transfusion services and public health authorities in USUV-endemic areas should be aware of a possible increase of human USUV infections.
Asunto(s)
Donantes de Sangre , Flavivirus , Técnicas de Amplificación de Ácido Nucleico/métodos , Virus del Nilo Occidental/aislamiento & purificación , Austria , Virus de la Encefalitis Japonesa (Subgrupo) , Humanos , Reacción en Cadena de la Polimerasa , ARN Viral , Estudios Retrospectivos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Virus del Nilo Occidental/genéticaAsunto(s)
Leucemia Linfocítica Crónica de Células B , Preparaciones Farmacéuticas , Glucuronosiltransferasa , Humanos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/genética , Antígenos de Histocompatibilidad Menor , Pirazoles , PirimidinasRESUMEN
BACKGROUND: The extent of expression of the blood group A on platelets is controversial. Further, the relation between platelets' blood group A expression and the titers of isoagglutinins has not been thoroughly investigated, so far. METHODS: We evaluated the relation between the genotype with platelets' blood group A and H expression estimated by flow cytometry and the titers of isoagglutinins. RESULTS: The A expression varied between genotypes and within genotypes. However, the expression in A1 was stronger than in all other genotypes (p < 0.0001). An overlap of expression levels was apparent between homozygous A1A1 and heterozygous A1 individuals. Still, The A1A1 genotype is associated with a particularly high antigen expression (p = 0.009). Platelets' A expression in A2 versus blood group O donors was also significant (p = 0.007), but there was again an overlap of expression. The secretor status had only little influence on the expression (p = 0.18). Also, isoagglutinin titers were not associated with genotypes. CONCLUSION: To distinguish between A1 and A2 donors may reduce incompatible platelet transfusions and therefore be favorable on platelet transfusion increment. Clinical data are needed to support this notion.
RESUMEN
BACKGROUND: Understanding the dynamics of SARS-CoV-2 reinfections is crucial for public health policy, vaccine development, and long-term disease management. However, data on reinfections in the general population remains scarce. OBJECTIVES: This study aimed to investigate SARS-CoV-2 antibody dynamics among Austrian blood donors, representing healthy adults, over two years following primary infection and to evaluate the reinfection risk. METHODS: 117,895 blood donations were analysed for SARS-CoV-2 total anti-N levels from June 2020 to December 2023. We examined anti-N and anti-S antibody dynamics and in vitro functionality in 230 study participants at five defined times during 24 months, assessing associations with demographics, vaccination status, and reinfection awareness. RESULTS: The seroprevalence of SARS-CoV-2 infection-derived anti-N antibodies increased over time, reaching 90% by February 2023 and remaining at that level since then. According to serological screenings, we found an 88% reinfection rate, which is in contrast to participants' reports indicating a reinfection rate of 59%. Our data further reveal that about 26% of reinfections went completely unnoticed. Antibody dynamics were independent of age, sex, and ABO blood group. Interestingly, individuals with multiple reinfections reported symptoms more frequently during their primary infection. Our results further show that vaccination modestly affected reinfection risk and disease course. CONCLUSION: SARS-CoV-2 reinfections were uncommon until the end of 2021 but became common with the advent of Omicron. This study highlights the underestimation of reinfection rates in healthy adults and underscores the need for continued surveillance, which is an important support for public health policies and intervention strategies.
Asunto(s)
Anticuerpos Antivirales , Donantes de Sangre , COVID-19 , Reinfección , SARS-CoV-2 , Humanos , COVID-19/epidemiología , Donantes de Sangre/estadística & datos numéricos , Masculino , Femenino , Adulto , SARS-CoV-2/inmunología , Persona de Mediana Edad , Anticuerpos Antivirales/sangre , Reinfección/epidemiología , Reinfección/virología , Estudios Seroepidemiológicos , Adulto Joven , Austria/epidemiología , Infecciones Asintomáticas/epidemiología , Anciano , AdolescenteRESUMEN
OBJECTIVE: The quality of platelet concentrates (PC) is important for the in vivo recovery of thrombostasis in patients suffering from bleeding disorders and in tumor patients after chemotherapy. In this respect, activated platelets (PLT) cannot display their full functionality in the recipient and even can cause adverse effects. Therefore, we developed a transmission electron microscopy (TEM) method for quality assessment of PC. METHODS: Score values taken from panorama TEM images describe the progress of PLT activation. To exemplify this method, i) 19 apheresis PC isolated with the Baxter Amicus system (BA) were compared with 14 PC obtained from pooled buffy coats (BC). ii) The score values of 33 PC derived from BA as well from BC were compared with flow-cytometric CD62P determinations by cross correlation. iii) Changes in the score value profiles during storage of a single pathogen-reduced BA PC were monitored over a period of 7 days. RESULTS: The TEM evaluation described allows for demonstrating particular PLT activation stages. i) Significant differences between the percentages of the score values 0, 1 and 2 could be demonstrated in both processing groups. No significant differences were found comparing these two groups. ii) A weak correlation could be shown when comparing the percentages of score values 2 plus 3 with the percentage of CD62P-positive PLT. iii) The pathogen reduction affected slightly the score profiles during storage due to an increase of dead PLT. CONCLUSION: Our investigations demonstrate the unique detailed quality information of PC obtained by the TEM method. This method can be performed in every routine electron microscopy laboratory.
RESUMEN
BACKGROUND: Substantial regional differences in the genetic patterns related to blood group have been observed across different continents. This diversity means that the blood supply, as an essential part of patient care, is increasingly impacted by global migration. Consequently, the Austrian blood donor population does not match the immigrant patient population. This mismatch is likely to result in the formation of alloantibodies to red cell antigens in the chronically transfused. Subsequently, major difficulties in providing compatible blood emerge. MATERIAL AND METHODS: The study included patients of African origin (n=290) and Caucasians who represent the Austrian donor population (n=1,017). Genetic typing was performed for up to 69 blood group polymorphisms with a multiplex sequence specific primer-PCR including high frequency antigens and antigens for which antisera are not commercially available. By assessing differences in antigen frequencies between the two populations, and using these data for prophylactic matching, we aim to develop tools to increase the quality of patient care. RESULTS: Results indicate various and significant differences (p<0.0001) in antigen frequencies between African patients and the European donor population, especially in the MNS, Duffy, Knops and Rhesus systems. DISCUSSION: Our data highlight the importance of matching the donor population to the demographics of the patient population. In addition, it underlines the need to recruit donors of African origin and to focus on the upcoming challenges, such as malaria semi-immunity and a significantly higher rate of infectious disease in this population. It is also recommended to apply extended genetic typing to detect rare blood types, and (cryo)storage of rare blood in national and international rare blood banks. Co-operation with regional blood banks should also be encouraged.
Asunto(s)
Antígenos de Grupos Sanguíneos , Humanos , Antígenos de Grupos Sanguíneos/genética , Polimorfismo Genético , Isoanticuerpos/genética , Bancos de Sangre , Donantes de SangreRESUMEN
Neutralizing antibodies (nAbs) are considered a valuable marker for measuring humoral immunity against SARS-CoV-2. However, live-virus neutralization tests (NTs) require high-biosafety-level laboratories and are time-consuming. Therefore, surrogate virus neutralization tests (sVNTs) have been widely applied, but unlike most anti-spike (S) antibody assays, NTs and sVNTs are not harmonized, requiring further evaluation and comparative analyses. This study compared seven commercial sVNTs and anti-S-antibody assays with a live-virus NT as a reference, using a panel of 720 single and longitudinal serum samples from 666 convalescent patients after SARS-CoV-2 infection. The sensitivity of these assays for detecting antibodies ranged from 48 to 94% after PCR-confirmed infection and from 56% to 100% relative to positivity in the in-house live-virus NT. Furthermore, we performed receiver operating characteristic (ROC) curve analyses to determine which immunoassays were most suitable for assessing nAb titers exceeding a specific cutoff (NT titer, ≥80) and found that the NeutraLISA and the cPass assays reached the highest area under the curve (AUC), exceeding 0.91. In addition, when the assays were compared for their correlation with nAb kinetics over time in a set of longitudinal samples, the extent of the measured decrease of nAbs after infection varied widely among the evaluated immunoassays. Finally, in vaccinated convalescent patients, high titers of nAbs exceeded the upper limit of the evaluated assays' quantification ranges. Based on data from this study, we conclude that commercial immunoassays are acceptable substitutes for live-virus NTs, particularly when additional adapted cutoffs are employed to detect nAbs beyond a specific threshold titer. IMPORTANCE While the measurement of neutralizing antibodies is considered a valuable tool in assessing protection against SARS-CoV-2, neutralization tests employ live-virus isolates and cell culture, requiring advanced laboratory biosafety levels. Including a large sample panel (over 700 samples), this study provides adapted cutoff values calculated for seven commercial immunoassays (including four surrogate neutralization assays and a protein-based microarray) that robustly correlate with specific titers of neutralizing antibodies.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Anticuerpos Neutralizantes , Pruebas de Neutralización , Inmunoglobulina G , Anticuerpos AntiviralesRESUMEN
Four new HLA class I alleles were characterized by next-generation sequencing and haplotypes determined.
Asunto(s)
Antígenos HLA-B , Antígenos HLA-C , Alelos , Frecuencia de los Genes , Antígenos HLA-A/genética , Antígenos HLA-B/genética , Antígenos HLA-C/genética , Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , HumanosRESUMEN
The COVID-19 pandemic has elicited the need to analyse and store large amounts of infectious samples for laboratory diagnostics. Therefore, there has been a demand for sample storage buffers that effectively inactivate infectious viral particles while simultaneously preserving the viral RNA. Here, we present a storage buffer containing guanidine-hydrochloride that fulfils both requirements. Its ability to preserve RNA stability was confirmed by RT-qPCR, and virus-inactivating properties were tested by tissue culture infectious dose assay. Our data revealed that RNA from samples diluted in this storage buffer was efficiently preserved. Spiking samples with RNase A resulted in RNAse concentrations up to 100 ng/mL being efficiently inhibited, whereas spiking samples with infectious SARS-CoV-2 particles demonstrated rapid virus inactivation. In addition, our buffer demonstrated good compatibility with several commercially available RNA extraction platforms. The presented guanidine-hydrochloride-based storage buffer efficiently inactivates infectious SARS-CoV-2 particles and supports viral RNA stability, leading to a reduced infection risk during sample analysis and an increased period for follow-up analysis, such as sequencing for virus variants. Because the presented buffer is uncomplicated to manufacture and compatible with a variety of commercially available test systems, its application can support and improve SARS-CoV-2 laboratory diagnostics worldwide.
RESUMEN
Storage of packed red blood cells is associated with changes in erythrocytes that over time increasingly impair cellular function and potentially contribute to adverse effects associated with blood transfusion. Exposure of phosphatidylserine at the outer membrane leaflet of erythrocytes and shedding of microvesicles (MVs) during packed red blood cell storage are alterations assumed to increase the risk of prothrombotic events in recipients. Here, we used rotational thromboelastometry to study the coagulation process in blood samples with erythrocytes from stored PRBCs reconstituted with freshly prepared platelet-rich plasma. We explored the influence of following effects on the coagulation process: 1) PRBC storage duration, 2) differences between erythrocytes from stored PRBCs compared to freshly drawn erythrocytes, and 3) the contribution of added MVs. Interestingly, despite of a higher fraction of PS-positive cells, erythrocytes from PRBCs stored for 6 weeks revealed longer clotting times than samples with erythrocytes stored for 2 or 4 weeks. Further, clotting times and clot formation times were considerably increased in samples reconstituted with erythrocytes from stored PRBCs as compared to fresh erythrocytes. Moreover, MVs added to reconstituted samples elicited only comparably small and ambiguous effects on coagulation. Thus, this study provides no evidence for an amplified clotting process from prolonged storage of PRBCs but on the contrary implicates a loss of function, which may be of clinical significance in massive transfusion. Our observations add to the increasing body of evidence viewing erythrocytes as active players in the clotting process.
RESUMEN
Convalescent plasma (CP) has been in use for the treatment of numerous infectious diseases for more than a century, recently also for coronavirus disease 2019 (COVID-19). A major challenge for this treatment is identifying suitable donors with sufficient levels of functional antibodies and to determine the optimal time span for CP donation. In this retrospective study, we analyzed 189 CP donations of 66 donors regarding anti-SARS-CoV-2 anti-S IgG antibody levels. We found a significant correlation between the semi-quantitative SARS-CoV-2 IgG ratio values and in vitro antibody functionality. A time-to-event analysis allowed us to predict the optimal time span of COVID-19 CP donor suitability. We found that high IgG ratio values, which significantly correlate with high in vitro antibody functionality, were suitable for CP donation for a median of 134 days after the first CP donation. Donors with lower IgG ratios were suitable for a median of 53 days. Our data support plasma collection centers to determine optimal points in time for CP donation by means of widely used semi-quantitative laboratory IgG ratio values.