Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
EMBO J ; 42(12): e111272, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37143403

RESUMEN

Patients with chronic obstructive pulmonary disease (COPD) are still waiting for curative treatments. Considering its environmental cause, we hypothesized that COPD will be associated with altered epigenetic signaling in lung cells. We generated genome-wide DNA methylation maps at single CpG resolution of primary human lung fibroblasts (HLFs) across COPD stages. We show that the epigenetic landscape is changed early in COPD, with DNA methylation changes occurring predominantly in regulatory regions. RNA sequencing of matched fibroblasts demonstrated dysregulation of genes involved in proliferation, DNA repair, and extracellular matrix organization. Data integration identified 110 candidate regulators of disease phenotypes that were linked to fibroblast repair processes using phenotypic screens. Our study provides high-resolution multi-omic maps of HLFs across COPD stages. We reveal novel transcriptomic and epigenetic signatures associated with COPD onset and progression and identify new candidate regulators involved in the pathogenesis of chronic lung diseases. The presence of various epigenetic factors among the candidates demonstrates that epigenetic regulation in COPD is an exciting research field that holds promise for novel therapeutic avenues for patients.


Asunto(s)
Enfermedad Pulmonar Obstructiva Crónica , Transcriptoma , Humanos , Epigénesis Genética , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Pulmón/patología , Perfilación de la Expresión Génica , Metilación de ADN
2.
Adv Exp Med Biol ; 1389: 1-19, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36350504

RESUMEN

DNA methylation and DNA methyltransferases (MTases)-the enzymes that introduce the methylation mark into the DNA-have been studied for almost 70 years. In this chapter, we review the key developments in the DNA methylation field that have led to our current understanding of the structures and mechanisms of DNA MTases. We discuss the essential biological roles of DNA methylation, including the discovery of DNA methylation, cloning and sequence analysis of the bacterial and eukaryotic MTases, and the elucidation of their structure, mechanism, regulation, and molecular evolution. We describe genetic studies that contributed greatly to the evolving views on the role of DNA methylation in development and diseases, the invention of methods for the genome-wide analysis of DNA methylation, and the biochemical identification of DNA MTases and the TET enzyme family, which is involved in DNA demethylation. We summarize the roles of MTases in bacterial epigenetics and the application of MTases in synthetic biology to generate artificial signaling systems. We finish by highlighting some open questions for the next years of research in the field.


Asunto(s)
Metilación de ADN , Metilasas de Modificación del ADN , Metilación de ADN/genética , Metilasas de Modificación del ADN/genética , Metilasas de Modificación del ADN/química , Metiltransferasas/química , Evolución Molecular , ADN/genética , ADN/metabolismo
3.
Adv Exp Med Biol ; 1389: 69-110, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36350507

RESUMEN

DNA methylation is a hot topic in basic and biomedical research. Despite tremendous progress in understanding the structures and biochemical properties of the mammalian DNA methyltransferases (DNMTs), principles of their targeting and regulation in cells have only begun to be uncovered. In mammals, DNA methylation is introduced by the DNMT1, DNMT3A, and DNMT3B enzymes, which are all large multi-domain proteins containing a catalytic C-terminal domain and a complex N-terminal part with diverse targeting and regulatory functions. The sub-nuclear localization of DNMTs plays an important role in their biological function: DNMT1 is localized to replicating DNA and heterochromatin via interactions with PCNA and UHRF1 and direct binding to the heterochromatic histone modifications H3K9me3 and H4K20me3. DNMT3 enzymes bind to heterochromatin via protein multimerization and are targeted to chromatin by their ADD, PWWP, and UDR domains, binding to unmodified H3K4, H3K36me2/3, and H2AK119ub1, respectively. In recent years, a novel regulatory principle has been discovered in DNMTs, as structural and functional data demonstrated that the catalytic activities of DNMT enzymes are under a tight allosteric control by their different N-terminal domains with autoinhibitory functions. This mechanism provides numerous possibilities for the precise regulation of the methyltransferases via controlling the binding and release of the autoinhibitory domains by protein partners, chromatin interactions, non-coding RNAs, or posttranslational modifications of the DNMTs. In this chapter, we summarize key enzymatic properties of DNMTs, viz. their specificity and processivity, and afterwards focus on the regulation of their activity and targeting via allosteric processes, protein interactions, and posttranslational modifications.


Asunto(s)
Metilación de ADN , Heterocromatina , Animales , Heterocromatina/genética , ADN Metiltransferasa 3A , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasa 1 , Metilasas de Modificación del ADN/genética , Cromatina/genética , ADN/metabolismo , Mamíferos/genética
4.
Mol Syst Biol ; 15(12): e8983, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31885201

RESUMEN

Arrayed CRISPR-based screens emerge as a powerful alternative to pooled screens making it possible to investigate a wide range of cellular phenotypes that are typically not amenable to pooled screens. Here, we describe a solid-phase transfection platform that enables CRISPR-based genetic screens in arrayed format with flexible readouts. We demonstrate efficient gene knockout upon delivery of guide RNAs and Cas9/guide RNA ribonucleoprotein complexes into untransformed and cancer cell lines. In addition, we provide evidence that our platform can be easily adapted to high-throughput screens and we use this approach to study oncogene addiction in tumor cells. Finally demonstrating that the human primary cells can also be edited using this method, we pave the way for rapid testing of potential targeted therapies.


Asunto(s)
Edición Génica/instrumentación , Neoplasias/genética , ARN Guía de Kinetoplastida/farmacología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Predisposición Genética a la Enfermedad , Ensayos Analíticos de Alto Rendimiento , Humanos , Fenotipo , Transfección
5.
Nucleic Acids Res ; 46(6): 3130-3139, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29518238

RESUMEN

The DNMT3A R882H mutation is frequently observed in acute myeloid leukemia (AML). It is located in the subunit and DNA binding interface of DNMT3A and has been reported to cause a reduction in activity and dominant negative effects. We investigated the mechanistic consequences of the R882H mutation on DNMT3A showing a roughly 40% reduction in overall DNA methylation activity. Biochemical assays demonstrated that R882H does not change DNA binding affinity, protein stability or subnuclear distribution of DNMT3A. Strikingly, DNA methylation experiments revealed pronounced changes in the flanking sequence preference of the DNMT3A-R882H mutant. Based on these results, different DNA substrates with selected flanking sequences were designed to be favored or disfavored by R882H. Kinetic analyses showed that the R882H favored substrate was methylated by R882H with 45% increased rate when compared with wildtype DNMT3A, while methylation of the disfavored substrate was reduced 7-fold. Our data expand the model of the potential carcinogenic effect of the R882H mutation by showing CpG site specific activity changes. This result suggests that R882 is involved in the indirect readout of flanking sequence preferences of DNMT3A and it may explain the particular enrichment of the R882H mutation in cancer patients by revealing mutation specific effects.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN/metabolismo , Mutación Missense , Enfermedad Aguda , Sitios de Unión/genética , Islas de CpG/genética , ADN/química , ADN/genética , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Humanos , Leucemia Mieloide/enzimología , Leucemia Mieloide/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Dominios Proteicos , Especificidad por Sustrato
6.
Nucleic Acids Res ; 46(17): 9044-9056, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30102379

RESUMEN

Despite their central importance in mammalian development, the mechanisms that regulate the DNA methylation machinery and thereby the generation of genomic methylation patterns are still poorly understood. Here, we identify the 5mC-binding protein MeCP2 as a direct and strong interactor of DNA methyltransferase 3 (DNMT3) proteins. We mapped the interaction interface to the transcriptional repression domain of MeCP2 and the ADD domain of DNMT3A and find that binding of MeCP2 strongly inhibits the activity of DNMT3A in vitro. This effect was reinforced by cellular studies where a global reduction of DNA methylation levels was observed after overexpression of MeCP2 in human cells. By engineering conformationally locked DNMT3A variants as novel tools to study the allosteric regulation of this enzyme, we show that MeCP2 stabilizes the closed, autoinhibitory conformation of DNMT3A. Interestingly, the interaction with MeCP2 and its resulting inhibition were relieved by the binding of K4 unmodified histone H3 N-terminal tail to the DNMT3A-ADD domain. Taken together, our data indicate that the localization and activity of DNMT3A are under the combined control of MeCP2 and H3 tail modifications where, depending on the modification status of the H3 tail at the binding sites, MeCP2 can act as either a repressor or activator of DNA methylation.


Asunto(s)
Cromatina/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN/química , Epigénesis Genética , Histonas/genética , Proteína 2 de Unión a Metil-CpG/genética , Regulación Alostérica , Animales , Sitios de Unión , Química Encefálica , Cromatina/química , Clonación Molecular , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Histonas/química , Histonas/metabolismo , Humanos , Proteína 2 de Unión a Metil-CpG/química , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Mutagénesis Sitio-Dirigida/métodos , Unión Proteica , Ingeniería de Proteínas/métodos , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
7.
Nucleic Acids Res ; 45(4): 1703-1713, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-27899645

RESUMEN

DNA methylation plays a critical role in the regulation and maintenance of cell-type specific transcriptional programs. Targeted epigenome editing is an emerging technology to specifically regulate cellular gene expression in order to modulate cell phenotypes or dissect the epigenetic mechanisms involved in their control. In this work, we employed a DNA methyltransferase Dnmt3a-Dnmt3L construct fused to the nuclease-inactivated dCas9 programmable targeting domain to introduce DNA methylation into the human genome specifically at the EpCAM, CXCR4 and TFRC gene promoters. We show that targeting of these loci with single gRNAs leads to efficient and widespread methylation of the promoters. Multiplexing of several guide RNAs does not increase the efficiency of methylation. Peaks of targeted methylation were observed around 25 bp upstream and 40 bp downstream of the PAM site, while 20-30 bp of the binding site itself are protected against methylation. Potent methylation is dependent on the multimerization of Dnmt3a/Dnmt3L complexes on the DNA. Furthermore, the introduced methylation causes transcriptional repression of the targeted genes. These new programmable epigenetic editors allow unprecedented control of the DNA methylation status in cells and will lead to further advances in the understanding of epigenetic signaling.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN/genética , ADN/metabolismo , Endonucleasas/metabolismo , Animales , Línea Celular Tumoral , Análisis por Conglomerados , Islas de CpG , ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/genética , Endonucleasas/genética , Epigénesis Genética , Epigenómica/métodos , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Ratones , Modelos Biológicos , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
8.
Trends Biochem Sci ; 39(7): 310-8, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24947342

RESUMEN

The widely-cited model of maintenance of DNA methylation at CpG sites implies that DNA methylation is introduced by the Dnmt3 de novo DNA methyltransferases during early development, and methylation at hemimethylated CpG sites is specifically maintained by the Dnmt1 maintenance methyltransferase. However, substantial experimental evidence from the past decade indicates that this simple model needs to be revised. DNA methylation can be described by a dynamic stochastic model, in which DNA methylation at each site is determined by the local activity of DNA methyltransferases (Dnmts), DNA demethylases, and the DNA replication rate. Through the targeting and regulation of these enzymes, DNA methylation is controlled by the network of chromatin marks.


Asunto(s)
Cromatina/genética , Metilación de ADN , Replicación del ADN , Metiltransferasas/metabolismo , Animales , Humanos
9.
Nucleic Acids Res ; 44(18): 8556-8575, 2016 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-27521372

RESUMEN

In mammals, DNA methylation is introduced by the DNMT1, DNMT3A and DNMT3B methyltransferases, which are all large multi-domain proteins containing a catalytic C-terminal domain and an N-terminal part with regulatory functions. Recently, two novel regulatory principles of DNMTs were uncovered. It was shown that their catalytic activity is under allosteric control of N-terminal domains with autoinhibitory function, the RFT and CXXC domains in DNMT1 and the ADD domain in DNMT3. Moreover, targeting and activity of DNMTs were found to be regulated in a concerted manner by interactors and posttranslational modifications (PTMs). In this review, we describe the structures and domain composition of the DNMT1 and DNMT3 enzymes, their DNA binding, catalytic mechanism, multimerization and the processes controlling their stability in cells with a focus on their regulation and chromatin targeting by PTMs, interactors and chromatin modifications. We propose that the allosteric regulation of DNMTs by autoinhibitory domains acts as a general switch for the modulation of the function of DNMTs, providing numerous possibilities for interacting proteins, nucleic acids or PTMs to regulate DNMT activity and targeting. The combined regulation of DNMT targeting and catalytic activity contributes to the precise spatiotemporal control of DNMT function and genome methylation in cells.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Mamíferos/metabolismo , Regulación Alostérica , Animales , Cromatina , ADN (Citosina-5-)-Metiltransferasas/química , Humanos , Modelos Biológicos , Unión Proteica
10.
Genome Res ; 24(11): 1842-53, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25301795

RESUMEN

Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies.


Asunto(s)
Anticuerpos/metabolismo , Histonas/metabolismo , Mapeo de Interacción de Proteínas/métodos , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Anticuerpos/inmunología , Sitios de Unión/genética , Western Blotting , Inmunoprecipitación de Cromatina , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Células HEK293 , Histonas/inmunología , Humanos , Lisina/metabolismo , Metilación , Péptidos/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Análisis por Matrices de Proteínas/métodos , Unión Proteica , Reproducibilidad de los Resultados
12.
Adv Exp Med Biol ; 945: 1-17, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826832

RESUMEN

DNA methylation and DNA methyltransferases (MTases) - the enzymes that introduce the methylation mark into the DNA - have been studied for almost 70 years. In this chapter, we review key developments in the field that led to our current understanding of the structures and mechanisms of DNA MTases and the essential biological role of DNA methylation, including the discovery of DNA methylation and DNA MTases, the cloning and sequence analysis of bacterial and eukaryotic MTases, and the elucidation of their structure, mechanism, and regulation. We describe genetic studies that contributed greatly to the evolving views on the role of DNA methylation in human development and diseases, the invention of methods for the genome-wide analysis of DNA methylation, and the biochemical identification of DNA MTases and the family of TET enzymes, which are involved in DNA demethylation. We finish by highlighting critical questions for the next years of research in the field.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN/genética , Metilasas de Modificación del ADN/genética , Evolución Molecular , Animales , ADN (Citosina-5-)-Metiltransferasas/química , Metilasas de Modificación del ADN/química , Humanos , Mamíferos/genética , Oxigenasas de Función Mixta/genética , Proteínas Proto-Oncogénicas/genética
13.
Adv Exp Med Biol ; 945: 87-122, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826836

RESUMEN

DNA methylation is currently one of the hottest topics in basic and biomedical research. Despite tremendous progress in understanding the structures and biochemical properties of the mammalian DNA nucleotide methyltransferases (DNMTs), principles of their regulation in cells have only begun to be uncovered. In mammals, DNA methylation is introduced by the DNMT1, DNMT3A, and DNMT3B enzymes, which are all large multi-domain proteins. These enzymes contain a catalytic C-terminal domain with a characteristic cytosine-C5 methyltransferase fold and an N-terminal part with different domains that interacts with other proteins and chromatin and is involved in targeting and regulation of the DNMTs. The subnuclear localization of the DNMT enzymes plays an important role in their biological function: DNMT1 is localized to replicating DNA via interaction with PCNA and UHRF1. DNMT3 enzymes bind to heterochromatin via protein multimerization and are targeted to chromatin by their ADD and PWWP domains. Recently, a novel regulatory mechanism has been discovered in DNMTs, as latest structural and functional data demonstrated that the catalytic activities of all three enzymes are under tight allosteric control of their N-terminal domains having autoinhibitory functions. This mechanism provides numerous possibilities for the precise regulation of the methyltransferases via controlling the binding and release of autoinhibitory domains by protein factors, noncoding RNAs, or by posttranslational modifications of the DNMTs. In this chapter, we summarize key enzymatic properties of DNMTs, including their specificity and processivity, and afterward we focus on the regulation of their activity and targeting via allosteric processes, protein interactors, and posttranslational modifications.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , Metilación de ADN/genética , Animales , Dominio Catalítico/genética , Cromatina/química , Cromatina/genética , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Heterocromatina/química , Heterocromatina/genética , Humanos , Procesamiento Proteico-Postraduccional/genética , ADN Metiltransferasa 3B
14.
J Biol Chem ; 289(43): 29602-13, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25147181

RESUMEN

The Dnmt3a DNA methyltransferase has been shown to bind cooperatively to DNA and to form large multimeric protein/DNA fibers. However, it has also been reported to methylate DNA in a processive manner, a property that is incompatible with protein/DNA fiber formation. We show here that the DNA methylation rate of Dnmt3a increases more than linearly with increasing enzyme concentration on a long DNA substrate, but not on a short 30-mer oligonucleotide substrate. We also show that addition of a catalytically inactive Dnmt3a mutant, which carries an amino acid exchange in the catalytic center, increases the DNA methylation rate by wild type Dnmt3a on the long substrate but not on the short one. In agreement with this finding, preincubation experiments indicate that stable protein/DNA fibers are formed on the long, but not on the short substrate. In addition, methylation experiments with substrates containing one or two CpG sites did not provide evidence for a processive mechanism over a wide range of enzyme concentrations. These data clearly indicate that Dnmt3a binds to DNA in a cooperative reaction and that the formation of stable protein/DNA fibers increases the DNA methylation rate. Fiber formation occurs at low µm concentrations of Dnmt3a, which are in the range of Dnmt3a concentrations in the nucleus of embryonic stem cells. Understanding the mechanism of Dnmt3a is of vital importance because Dnmt3a is a hotspot of somatic cancer mutations one of which has been implicated in changing Dnmt3a processivity.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN/metabolismo , Animales , Secuencia de Bases , Biocatálisis , Núcleo Celular/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Células Madre Embrionarias/enzimología , Fluorescencia , Cinética , Ratones , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Motivos de Nucleótidos/genética , Unión Proteica , Multimerización de Proteína , Análisis de Secuencia de ADN , Especificidad por Sustrato
15.
J Biol Chem ; 289(7): 4106-15, 2014 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-24368767

RESUMEN

The ubiquitin-like, containing PHD and RING finger domains protein 1 (UHRF1) is essential for maintenance DNA methylation by DNA methyltransferase 1 (DNMT1). UHRF1 has been shown to recruit DNMT1 to replicated DNA by the ability of its SET and RING-associated (SRA) domain to bind to hemimethylated DNA. Here, we demonstrate that UHRF1 also increases the activity of DNMT1 by almost 5-fold. This stimulation is mediated by a direct interaction of both proteins through the SRA domain of UHRF1 and the replication focus targeting sequence domain of DNMT1, and it does not require DNA binding by the SRA domain. Disruption of the interaction between DNMT1 and UHRF1 by replacement of key residues in the replication focus targeting sequence domain led to a strong reduction of DNMT1 stimulation. Additionally, the interaction with UHRF1 increased the specificity of DNMT1 for methylation of hemimethylated CpG sites. These findings show that apart from the targeting of DNMT1 to the replicated DNA UHRF1 increases the activity and specificity of DNMT1, thus exerting a multifaceted influence on the maintenance of DNA methylation.


Asunto(s)
Islas de CpG/fisiología , ADN (Citosina-5-)-Metiltransferasas/química , Metilación de ADN/fisiología , Replicación del ADN/fisiología , ADN/química , Proteínas Nucleares/química , Regulación Alostérica/fisiología , Animales , Proteínas Potenciadoras de Unión a CCAAT , ADN/genética , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1 , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Ratones , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estructura Terciaria de Proteína , Ubiquitina-Proteína Ligasas
16.
Nature ; 452(7183): 45-50, 2008 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-18322525

RESUMEN

Processes that regulate gene transcription are directly under the influence of the genome organization. The epigenome contains additional information that is not brought by DNA sequence, and generates spatial and functional constraints that complement genetic instructions. DNA methylation on CpGs constitutes an epigenetic mark generally correlated with transcriptionally silent condensed chromatin. Replication of methylation patterns by DNA methyltransferases maintains genome stability through cell division. Here we present evidence of an unanticipated dynamic role for DNA methylation in gene regulation in human cells. Periodic, strand-specific methylation/demethylation occurs during transcriptional cycling of the pS2/TFF1 gene promoter on activation by oestrogens. DNA methyltransferases exhibit dual actions during these cycles, being involved in CpG methylation and active demethylation of 5mCpGs through deamination. Inhibition of this process precludes demethylation of the pS2 gene promoter and its subsequent transcriptional activation. Cyclical changes in the methylation status of promoter CpGs may thus represent a critical event in transcriptional achievement.


Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Proteínas Supresoras de Tumor/genética , Línea Celular , Inmunoprecipitación de Cromatina , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Reparación del ADN , Desaminación , Estrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Cinética , Timina ADN Glicosilasa/metabolismo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Factor Trefoil-1
17.
Nucleic Acids Res ; 40(2): 569-80, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21926161

RESUMEN

The catalytic domain of Dnmt3a cooperatively multimerizes on DNA forming nucleoprotein filaments. Based on modeling, we identified the interface of Dnmt3a complexes binding next to each other on the DNA and disrupted it by charge reversal of critical residues. This prevented cooperative DNA binding and multimerization of Dnmt3a on the DNA, as shown by the loss of cooperative complex formation in electrophoretic mobility shift assay, the loss of cooperativity in DNA binding in solution, the loss of a characteristic 8- to 10-bp periodicity in DNA methylation and direct imaging of protein-DNA complexes by scanning force microscopy. Non-cooperative Dnmt3a-C variants bound DNA well and retained methylation activity, indicating that cooperative DNA binding and multimerization of Dnmt3a on the DNA are not required for activity. However, one non-cooperative variant showed reduced heterochromatic localization in mammalian cells. We propose two roles of Dnmt3a cooperative DNA binding in the cell: (i) either nucleofilament formation could be required for periodic DNA methylation or (ii) favorable interactions between Dnmt3a complexes may be needed for the tight packing of Dnmt3a at heterochromatic regions. The complex interface optimized for tight packing would then promote the cooperative binding of Dnmt3a to naked DNA in vitro.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN/metabolismo , Animales , Biocatálisis , ADN/química , ADN/ultraestructura , ADN (Citosina-5-)-Metiltransferasas/genética , Metilación de ADN , ADN Metiltransferasa 3A , Ensayo de Cambio de Movilidad Electroforética , Heterocromatina/enzimología , Ratones , Microscopía de Fuerza Atómica , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Células 3T3 NIH , Nucleoproteínas/ultraestructura , Unión Proteica , Multimerización de Proteína
18.
Nature ; 449(7159): 248-51, 2007 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-17713477

RESUMEN

Genetic imprinting, found in flowering plants and placental mammals, uses DNA methylation to yield gene expression that is dependent on the parent of origin. DNA methyltransferase 3a (Dnmt3a) and its regulatory factor, DNA methyltransferase 3-like protein (Dnmt3L), are both required for the de novo DNA methylation of imprinted genes in mammalian germ cells. Dnmt3L interacts specifically with unmethylated lysine 4 of histone H3 through its amino-terminal PHD (plant homeodomain)-like domain. Here we show, with the use of crystallography, that the carboxy-terminal domain of human Dnmt3L interacts with the catalytic domain of Dnmt3a, demonstrating that Dnmt3L has dual functions of binding the unmethylated histone tail and activating DNA methyltransferase. The complexed C-terminal domains of Dnmt3a and Dnmt3L showed further dimerization through Dnmt3a-Dnmt3a interaction, forming a tetrameric complex with two active sites. Substitution of key non-catalytic residues at the Dnmt3a-Dnmt3L interface or the Dnmt3a-Dnmt3a interface eliminated enzymatic activity. Molecular modelling of a DNA-Dnmt3a dimer indicated that the two active sites are separated by about one DNA helical turn. The C-terminal domain of Dnmt3a oligomerizes on DNA to form a nucleoprotein filament. A periodicity in the activity of Dnmt3a on long DNA revealed a correlation of methylated CpG sites at distances of eight to ten base pairs, indicating that oligomerization leads Dnmt3a to methylate DNA in a periodic pattern. A similar periodicity is observed for the frequency of CpG sites in the differentially methylated regions of 12 maternally imprinted mouse genes. These results suggest a basis for the recognition and methylation of differentially methylated regions in imprinted genes, involving the detection of both nucleosome modification and CpG spacing.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/química , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , Modelos Biológicos , Animales , Sitios de Unión , Dominio Catalítico , Islas de CpG/genética , Cristalografía por Rayos X , ADN Metiltransferasa 3A , Dimerización , Impresión Genómica , Humanos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Nucleosomas/química , Nucleosomas/genética , Nucleosomas/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato
19.
Angew Chem Int Ed Engl ; 52(51): 13524-36, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24346936

RESUMEN

Genomic imprinting, the parent of origin-dependent expression of genes, has been discovered as a fascinating example of the control of gene expression by epigenetic processes in the human body. It affects about 100 genes, which are often involved in growth and development. In this Review, we discuss the mechanisms leading to the generation of gender-specific imprints in form of DNA methylation marks, their preservation during growth and development of the organism, and the processes that translate parental methylation marks into monoallelic gene expression. We discuss the gender-specific dimorphic nature of imprints from an evolutionary point of view and present the prevalent model that molecular imprinting mediates a conflict of interest between the parents that occurs in viviparous animals. Finally, we summarize the relevance of parental imprinting for human health.


Asunto(s)
Metilación de ADN/genética , Epigénesis Genética/genética , Impresión Genómica/genética , Evolución Molecular , Humanos
20.
Front Endocrinol (Lausanne) ; 14: 1134478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008919

RESUMEN

Introduction: Beta cell dysfunction by loss of beta cell identity, dedifferentiation, and the presence of polyhormonal cells are main characteristics of diabetes. The straightforward strategy for curing diabetes implies reestablishment of pancreatic beta cell function by beta cell replacement therapy. Aristaless-related homeobox (Arx) gene encodes protein which plays an important role in the development of pancreatic alpha cells and is a main target for changing alpha cell identity. Results: In this study we used CRISPR/dCas9-based epigenetic tools for targeted hypermethylation of Arx gene promoter and its subsequent suppression in mouse pancreatic αTC1-6 cell line. Bisulfite sequencing and methylation profiling revealed that the dCas9-Dnmt3a3L-KRAB single chain fusion constructs (EpiCRISPR) was the most efficient. Epigenetic silencing of Arx expression was accompanied by an increase in transcription of the insulin gene (Ins2) mRNA on 5th and 7th post-transfection day, quantified by both RT-qPCR and RNA-seq. Insulin production and secretion was determined by immunocytochemistry and ELISA assay, respectively. Eventually, we were able to induce switch of approximately 1% of transiently transfected cells which were able to produce 35% more insulin than Mock transfected alpha cells. Conclusion: In conclusion, we successfully triggered a direct, transient switch of pancreatic alpha to insulin-producing cells opening a future research on promising therapeutic avenue for diabetes management.


Asunto(s)
Diabetes Mellitus , Células Secretoras de Glucagón , Ratones , Animales , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genética , Insulina/metabolismo , Células Secretoras de Glucagón/metabolismo , Metilación de ADN , Diabetes Mellitus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA