Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomedicines ; 10(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35203622

RESUMEN

Inflammatory bowel disease (IBD) is characterized by chronic inflammation in the gastrointestinal tract, resulting in severe symptoms. At the moment, the goal of medical treatments is to reduce inflammation. IBD is treated with systemic anti-inflammatory compounds, but they have serious side effects. The treatment that is most efficient and causes the fewest side effects would be the delivery of the drugs on the disease site. This study aimed to investigate the suitability of sphingomyelin (SM) containing liposomes to specifically target areas of inflammation in dextran sulfate sodium-induced murine colitis. Sphingomyelin is a substrate to the sphingomyelinase enzyme, which is only present outside cells in cell stress, like inflammation. When sphingomyelin consisting of liposomes is predisposed to the enzyme, it causes the weakening of the membrane structure. We demonstrated that SM-liposomes are efficiently taken up in intestinal macrophages, indicating their delivery potential. Furthermore, our studies showed that sphingomyelinase activity and release are increased in a dextran sulfate sodium-induced IBD mouse model. The enzyme appearance in IBD disease was also traced in intestine samples of the dextran sulfate sodium-treated mice and human tissue samples. The results from the IBD diseased animals, treated with fluorescently labeled SM-liposomes, demonstrated that the liposomes were taken up preferentially in the inflamed colon. This uptake efficiency correlated with sphingomyelinase activity.

2.
FEBS J ; 288(20): 6052-6062, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33999492

RESUMEN

Monocarboxylate transporter isoforms 1-4, MCT, of the solute carrier SLC16A family facilitate proton-coupled transport of l-lactate. Growth of tumors that exhibit the Warburg effect, that is, high rates of anaerobic glycolysis despite availability of oxygen, relies on swift l-lactate export, whereas oxygenic cancer cells import circulating l-lactate as a fuel. Currently, MCTs are viewed as promising anticancer targets. Small-molecule inhibitors have been found, and, recently, high-resolution protein structures have been obtained. Key questions, however, regarding the exact binding sites of cysteine-modifying inhibitors and the substrate translocation cycle lack a conclusive experimental basis. Here, we report Cys159 of the ubiquitous human MCT1 to reside in a critical hinge region of the alternating access-type transporter. We identified Cys159 as the binding site of the organomercurial pCMBS. The inhibitory effect of pCMBS was proposed to be indirect via modification of the chaperone basigin. We provide evidence that pCMBS locks MCT1 in its outward open conformation in a wedge-like fashion. We corroborated this finding using smaller cysteine-modifying reagents that size-dependently inhibited l-lactate transport. The smallest modifiers targeted additional cysteines as shown by a C159S mutant. We found a Cys399/Cys400 pair to constitute the second hinge of the transporter that tolerated only individual replacement by serine. The hinge cysteines, in particular the selectively addressable Cys159, provide natural anchors for placing probes into MCTs to report, for instance, on the electrostatics or hydration upon binding of the transported l-lactate substrate and the proton cosubstrate.


Asunto(s)
4-Cloromercuribencenosulfonato/farmacología , Basigina/química , Cisteína/química , Inhibidores Enzimáticos/farmacología , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/farmacología , Simportadores/antagonistas & inhibidores , Basigina/genética , Basigina/metabolismo , Humanos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Conformación Proteica , Simportadores/metabolismo
3.
PLoS One ; 16(3): e0249110, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33770122

RESUMEN

Transmembrane transport of l-lactate by members of the monocarboxylate transporter family, MCT, is vital in human physiology and a malignancy factor in cancer. Interaction with an accessory protein, typically basigin, is required to deliver the MCT to the plasma membrane. It is unknown whether basigin additionally exerts direct effects on the transmembrane l-lactate transport of MCT1. Here, we show that the presence of basigin leads to an intracellular accumulation of l-lactate 4.5-fold above the substrate/proton concentrations provided by the external buffer. Using basigin truncations we localized the effect to arise from the extracellular Ig-I domain. Identification of surface patches of condensed opposite electrostatic potential, and experimental analysis of charge-affecting Ig-I mutants indicated a bivalent harvesting antenna functionality for both, protons and substrate anions. From these data, and determinations of the cytosolic pH with a fluorescent probe, we conclude that the basigin Ig-I domain drives lactate uptake by locally increasing the proton and substrate concentration at the extracellular MCT entry site. The biophysical properties are physiologically relevant as cell growth on lactate media was strongly promoted in the presence of the Ig-I domain. Lack of the domain due to shedding, or misfolding due to breakage of a stabilizing disulfide bridge reversed the effect. Tumor progression according to classical or reverse Warburg effects depends on the transmembrane l-lactate distribution, and this study shows that the basigin Ig-I domain is a pivotal determinant.


Asunto(s)
Basigina/metabolismo , Espacio Intracelular/metabolismo , Ácido Láctico/metabolismo , Basigina/química , Línea Celular Tumoral , Humanos , Dominios Proteicos , Transporte de Proteínas
4.
Cancers (Basel) ; 12(12)2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33327621

RESUMEN

Most available cancer chemotherapies are based on systemically administered small organic molecules, and only a tiny fraction of the drug reaches the disease site. The approach causes significant side effects and limits the outcome of the therapy. Targeted drug delivery provides an alternative to improve the situation. However, due to the poor release characteristics of the delivery systems, limitations remain. This report presents a new approach to address the challenges using two fundamentally different mechanisms to trigger the release from the liposomal carrier. We use an endogenous disease marker, an enzyme, combined with an externally applied magnetic field, to open the delivery system at the correct time only in the disease site. This site-activated release system is a novel two-switch nanomachine that can be regulated by a cell stress-induced enzyme at the cellular level and be remotely controlled using an applied magnetic field. We tested the concept using sphingomyelin-containing liposomes encapsulated with indocyanine green, fluorescent marker, or the anticancer drug cisplatin. We engineered the liposomes by adding paramagnetic beads to act as a receiver of outside magnetic energy. The developed multifunctional liposomes were characterized in vitro in leakage studies and cell internalization studies. The release system was further studied in vivo in imaging and therapy trials using a squamous cell carcinoma tumor in the mouse as a disease model. In vitro studies showed an increased release of loaded material when stress-related enzyme and magnetic field was applied to the carrier liposomes. The theranostic liposomes were found in tumors, and the improved therapeutic effect was shown in the survival studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA