Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Biol ; 20(8): e3001707, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36040953

RESUMEN

Hunting and its impacts on wildlife are typically studied regionally, with a particular focus on the Global South. Hunting can, however, also undermine rewilding efforts or threaten wildlife in the Global North. Little is known about how hunting manifests under varying socioeconomic and ecological contexts across the Global South and North. Herein, we examined differences and commonalities in hunting characteristics across an exemplary Global South-North gradient approximated by the Human Development Index (HDI) using face-to-face interviews with 114 protected area (PA) managers in 25 African and European countries. Generally, we observed that hunting ranges from the illegal, economically motivated, and unsustainable hunting of herbivores in the South to the legal, socially and ecologically motivated hunting of ungulates within parks and the illegal hunting of mainly predators outside parks in the North. Commonalities across this Africa-Europe South-North gradient included increased conflict-related killings in human-dominated landscapes and decreased illegal hunting with beneficial community conditions, such as mutual trust resulting from community involvement in PA management. Nevertheless, local conditions cannot outweigh the strong effect of the HDI on unsustainable hunting. Our findings highlight regional challenges that require collaborative, integrative efforts in wildlife conservation across actors, while identified commonalities may outline universal mechanisms for achieving this goal.


Asunto(s)
Animales Salvajes , Conservación de los Recursos Naturales , África , Animales , Europa (Continente) , Humanos , Caza , Mamíferos
2.
Sensors (Basel) ; 22(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36501782

RESUMEN

The development and application of modern technology are an essential basis for the efficient monitoring of species in natural habitats to assess the change of ecosystems, species communities and populations, and in order to understand important drivers of change. For estimating wildlife abundance, camera trapping in combination with three-dimensional (3D) measurements of habitats is highly valuable. Additionally, 3D information improves the accuracy of wildlife detection using camera trapping. This study presents a novel approach to 3D camera trapping featuring highly optimized hardware and software. This approach employs stereo vision to infer the 3D information of natural habitats and is designated as StereO CameRA Trap for monitoring of biodivErSity (SOCRATES). A comprehensive evaluation of SOCRATES shows not only a 3.23% improvement in animal detection (bounding box mAP75), but also its superior applicability for estimating animal abundance using camera trap distance sampling. The software and documentation of SOCRATES is openly provided.


Asunto(s)
Animales Salvajes , Ecosistema , Animales , Biodiversidad
3.
Am J Primatol ; 83(1): e23213, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33169878

RESUMEN

Despite the large body of literature on ape conservation, much of the data needed for evidence-based conservation decision-making is still not readily accessible and standardized, rendering cross-site comparison difficult. To support knowledge synthesis and to complement the IUCN SSC Ape Populations, Environments and Surveys database, we created the A.P.E.S. Wiki (https://apeswiki.eva.mpg.de), an open-access platform providing site-level information on ape conservation status and context. The aim of this Wiki is to provide information and data about geographical ape locations, to curate information on individuals and organizations active in ape research and conservation, and to act as a tool to support collaboration between conservation practitioners, scientists, and other stakeholders. To illustrate the process and benefits of knowledge synthesis, we used the momentum of the update of the conservation action plan for western chimpanzees (Pan troglodytes verus) and began with this critically endangered taxon. First, we gathered information on 59 sites in West Africa from scientific publications, reports, and online sources. Information was compiled in a standardized format and can thus be summarized using a web scraping approach. We then asked experts working at those sites to review and complement the information (20 sites have been reviewed to date). We demonstrate the utility of the information available through the Wiki, for example, for studying species distribution. Importantly, as an open-access platform and based on the well-known wiki layout, the A.P.E.S. Wiki can contribute to direct and interactive information sharing and promote the efforts invested by the ape research and conservation community. The Section on Great Apes and the Section on Small Apes of the IUCN SSC Primate Specialist Group will guide and support the expansion of the platform to all small and great ape taxa. Similar collaborative efforts can contribute to extending knowledge synthesis to all nonhuman primate species.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción , Pan troglodytes , África Occidental , Animales
4.
Am J Primatol ; 83(12): e23338, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34662462

RESUMEN

Species distributions are influenced by processes occurring at multiple spatial scales. It is therefore insufficient to model species distribution at a single geographic scale, as this does not provide the necessary understanding of determining factors. Instead, multiple approaches are needed, each differing in spatial extent, grain, and research objective. Here, we present the first attempt to model continent-wide great ape density distribution. We used site-level estimates of African great ape abundance to (1) identify socioeconomic and environmental factors that drive densities at the continental scale, and (2) predict range-wide great ape density. We collated great ape abundance estimates from 156 sites and defined 134 pseudo-absence sites to represent additional absence locations. The latter were based on locations of unsuitable environmental conditions for great apes, and on existing literature. We compiled seven socioeconomic and environmental covariate layers and fitted a generalized linear model to investigate their influence on great ape abundance. We used an Akaike-weighted average of full and subset models to predict the range-wide density distribution of African great apes for the year 2015. Great ape densities were lowest where there were high Human Footprint and Gross Domestic Product values; the highest predicted densities were in Central Africa, and the lowest in West Africa. Only 10.7% of the total predicted population was found in the International Union for Conservation of Nature Category I and II protected areas. For 16 out of 20 countries, our estimated abundances were largely in line with those from previous studies. For four countries, Central African Republic, Democratic Republic of the Congo, Liberia, and South Sudan, the estimated populations were excessively high. We propose further improvements to the model to overcome survey and predictor data limitations, which would enable a temporally dynamic approach for monitoring great apes across their range based on key indicators.


Asunto(s)
Hominidae , África Central , África Occidental , Animales , República Centroafricana , Recolección de Datos , Gorilla gorilla , Pan troglodytes
5.
J Hum Evol ; 146: 102817, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32683168

RESUMEN

The roots of human hunting and meat eating lie deep in our evolutionary past shared with chimpanzees (Pan troglodytes). From the few habituated wild populations, we know that there is considerable variation in the extent to which chimpanzees consume meat. Expanding our knowledge of meat eating frequencies to more, yet unhabituated, populations requires noninvasive, indirect quantitative techniques. We here evaluate the use of stable isotopes to reconstruct meat-eating behavior in wild chimpanzees. We present hair isotope data (n = 260) of two western chimpanzee (P. troglodytes verus) groups from Taï forest (Côte d'Ivoire) and relate them to directly observed amounts of meat consumed, sex/female reproductive state, and group, while controlling for differences between individuals, seasons, and observation efforts. Succeeding seven months of hunting observations, we collected hair of 25 individuals for sequential analysis of δ15N and δ13C. Hunting success in the 7-month study period varied between the groups, with 25 successful hunts in the East group and only 8 in the North group. However, our models only found a direct relationship between amounts of meat consumed and variation within individual hair δ15N values in the East group, but not in the North group and not when comparing between individuals or groups. Although on average East group individuals consumed more than double the amount of meat than North group individuals, their δ15N values were significantly lower, suggesting that differences in microhabitat are substantial between group territories. The effect of sex/female reproductive state was significant in δ15N and δ13C, suggesting it related to access to food or feeding preferences. We conclude that several factors additional to diet are influencing and thus obscuring the isotope ratios in wild chimpanzee hair, particularly when comparing between sexes and social groups.


Asunto(s)
Isótopos de Carbono/análisis , Dieta , Conducta Alimentaria , Carne , Isótopos de Nitrógeno/análisis , Pan troglodytes , Animales , Côte d'Ivoire , Femenino , Cabello/química , Masculino , Parques Recreativos
6.
Glob Chang Biol ; 25(9): 3163-3178, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31034733

RESUMEN

Primates are facing an impending extinction crisis, driven by extensive habitat loss, land use change and hunting. Climate change is an additional threat, which alone or in combination with other drivers, may severely impact those taxa unable to track suitable environmental conditions. Here, we investigate the extent of climate and land use/cover (LUC) change-related risks for primates. We employed an analytical approach to objectively select a subset of climate scenarios, for which we then calculated changes in climatic and LUC conditions for 2050 across primate ranges (N = 426 species) under a best-case scenario and a worst-case scenario. Generalized linear models were used to examine whether these changes varied according to region, conservation status, range extent and dominant habitat. Finally, we reclassified primate ranges based on different magnitudes of maximum temperature change, and quantified the proportion of ranges overall and of primate hotspots in particular that are likely to be exposed to extreme temperature increases. We found that, under the worst-case scenario, 74% of Neotropical forest-dwelling primates are likely to be exposed to maximum temperature increases up to 7°C. In contrast, 38% of Malagasy savanna primates will experience less pronounced warming of up to 3.5°C. About one quarter of Asian and African primates will face up to 50% crop expansion within their range. Primary land (undisturbed habitat) is expected to disappear across species' ranges, whereas secondary land (disturbed habitat) will increase by up to 98%. With 86% of primate ranges likely to be exposed to maximum temperature increases >3°C, primate hotspots in the Neotropics are expected to be particularly vulnerable. Our study highlights the fundamental exposure risk of a large percentage of primate ranges to predicted climate and LUC changes. Importantly, our findings underscore the urgency with which climate change mitigation measures need to be implemented to avert primate extinctions on an unprecedented scale.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Animales , Ecosistema , Primates , Medición de Riesgo
7.
Am J Phys Anthropol ; 168(4): 665-675, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30693959

RESUMEN

OBJECTIVES: Food scarcity is proposed to be a limitation to chimpanzees at the limits of their range; however, such a constraint has never been investigated in this context. We investigated patterns of δ13 C and δ15 N variation along a latitudinal gradient at the northwestern West African chimpanzee (Pan troglodytes verus) range limit with the expectation that isotope ratios of chimpanzees at the range limit will indicate different dietary strategies or higher physiological constraints than chimpanzees further from the edge. MATERIALS AND METHODS: We measured δ13 C and δ15 N values in hair (n = 81) and plant food (n = 342) samples from five chimpanzee communities located along a latitudinal gradient in Southeastern Senegal. RESULTS: We found clear grouping patterns in hair δ13 C and δ15 N in the four southern sites compared to the northernmost site. Environmental baseline samples collected from these sites revealed overall higher plant δ15 N values at the northernmost site, but similar δ13 C values across sites. By accounting for environmental baseline, Δ13 C and Δ15 N values were clustered for all five sites relative to total Pan variation, but indicated a 13 C-enriched diet at the range limit. DISCUSSION: Clustering in Δ13 C and Δ15 N values supports that strategic shifting between preferred and fallback foods is a likely ubiquitous but necessary strategy employed by these chimpanzees to cope with their environment, potentially allowing chimpanzees at their limits to avoid periods of starvation. These results also underline the necessity of accounting for local isotopic baseline differences during inter-site comparison.


Asunto(s)
Isótopos de Carbono/análisis , Dieta , Conducta Alimentaria/fisiología , Isótopos de Nitrógeno/análisis , Pan troglodytes/fisiología , Animales , Antropología Física , Ecosistema , Metabolismo Energético/fisiología , Cabello/química , Plantas Comestibles/química , Senegal
8.
Am J Primatol ; 81(3): e22962, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30811079

RESUMEN

The extension of distance sampling methods to accommodate observations from camera traps has recently enhanced the potential to remotely monitor multiple species without the need of additional data collection (sign production and decay rates) or individual identification. However, the method requires that the proportion of time is quantifiable when animals can be detected by the cameras. This can be problematic, for instance, when animals spend time above the ground, which is the case for most primates. In this study, we aimed to validate camera trap distance sampling (CTDS) for the semiarboreal western chimpanzee (Pan troglodytes verus) in Taï National Park, Côte d'Ivoire by estimating abundance of a population of known size and comparing estimates to those from other commonly applied methods. We estimated chimpanzee abundance using CTDS and accounted for limited availability for detection (semiarboreal). We evaluated bias and precision of estimates, as well as costs and efforts required to obtain them, and compared them to those from spatially explicit capture-recapture (SECR) and line transect nest surveys. Abundance estimates obtained by CTDS and SECR produced a similar negligible bias, but CTDS yielded a larger coefficient of variation (CV = 39.70% for CTDS vs. 1%/19% for SECR). Line transects generated the most biased abundance estimates but yielded a better coefficient of variation (27.40-27.85%) than CTDS. Camera trap surveys were twice more costly than line transects because of the initial cost of cameras, while line transects surveys required more than twice as much time in the field. This study demonstrates the potential to obtain unbiased estimates of the abundance of semiarboreal species like chimpanzees by CTDS. HIGHLIGHTS: Camera trap distance sampling produced accurate density estimates for semiarboreal chimpanzees. Availability for detection must be accounted for and can be derived from the activity pattern.


Asunto(s)
Pan troglodytes , Fotograbar/métodos , Animales , Sesgo , Côte d'Ivoire , Recolección de Datos/métodos , Densidad de Población
9.
Am J Primatol ; 81(9): e23042, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31468565

RESUMEN

As animal populations continue to decline, frequently driven by large-scale land-use change, there is a critical need for improved environmental planning. While data-driven spatial planning is widely applied in conservation, as of yet it is rarely used for primates. The western chimpanzee (Pan troglodytes verus) declined by 80% within 24 years and was uplisted to Critically Endangered by the IUCN Red List of Threatened Species in 2016. To support conservation planning for western chimpanzees, we systematically identified geographic areas important for this taxon. We based our analysis on a previously published data set of modeled density distribution and on several scenarios that accounted for different spatial scales and conservation targets. Across all scenarios, typically less than one-third of areas we identified as important are currently designated as high-level protected areas (i.e., national park or IUCN category I or II). For example, in the scenario for protecting 50% of all chimpanzees remaining in West Africa (i.e., approximately 26,500 chimpanzees), an area of approximately 60,000 km2 was selected (i.e., approximately 12% of the geographic range), only 24% of which is currently designated as protected areas. The derived maps can be used to inform the geographic prioritization of conservation interventions, including protected area expansion, "no-go-zones" for industry and infrastructure, and conservation sites outside the protected area network. Environmental guidelines by major institutions funding infrastructure and resource extraction projects explicitly require corporations to minimize the negative impact on great apes. Therefore, our results can inform avoidance and mitigation measures during the planning phases of such projects. This study was designed to inform future stakeholder consultation processes that could ultimately integrate the conservation of western chimpanzees with national land-use priorities. Our approach may help in promoting similar work for other primate taxa to inform systematic conservation planning in times of growing threats.


Asunto(s)
Conservación de los Recursos Naturales/métodos , Especies en Peligro de Extinción , Pan troglodytes , África Occidental , Animales
10.
Folia Primatol (Basel) ; 90(1): 3-64, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30799412

RESUMEN

To improve our understanding of the evolutionary origins of culture and technology in humans, it is vital that we document the full extent of behavioural diversity in our great ape relatives. About half of the world's remaining chimpanzees (Pan spp.) live in the Democratic Republic of Congo (DRC), yet until now we have known almost nothing about their behaviour. Here we describe the insect-related tool technology of Bili-Uéré chimpanzees (Pan troglodytes schweinfurthii) inhabiting an area of at least a 50,000-km2 area in northern DRC, as well as their percussive technology associated with food processing. Over a 12-year period, we documented chimpanzee tools and artefacts at 20 survey areas and gathered data on dung, feeding remains and sleeping nests. We describe a new chimpanzee tool kit: long probes used to harvest epigaeic driver ants (Dorylus spp.), short probes used to extract ponerine ants and the arboreal nests of stingless bees, wands to dip for D. kohli and stout digging sticks used to access underground meliponine bee nests. Epigaeic Dorylus tools were significantly longer than the other tool types, and D. kohli tools were significantly thinner. Tools classified as terrestrial honey-digging sticks were a significant predictor for brushed and blunted tool ends, consistent with their presumed use. We describe two potential new tool types, an "ant scoop" and a "fruit hammer." We document an extensive percussive technology used to process termite mounds of Cubitermes sp. and Thoracotermes macrothorax and hard-shelled fruits such as Strychnos, along with evidence of the pounding open of African giant snails and tortoises. We encountered some geographic variation in behaviour: we found honey-digging tools, long driver ant probes and fruit-pounding sites only to the north of the Uele River; there were more epigaeic Dorylus tools to the north and more ponerine ant tools to the south. We found no evidence of termite-fishing, despite the availability of Macrotermes muelleri mounds throughout the region. This lack of evidence is consistent with the results of dung washes, which revealed a substantial proportion of driver ants, but no evidence of Macrotermes or other termites. Our results allow us to describe a new chimpanzee behavioural complex, characterised by a general similarity of multiple behaviours across a large, ecologically diverse region but with subtle differences in prey choice and techniques. We propose that this widespread and related suite of behaviours be referred to as the Bili-Uéré Chimpanzee Behavioural Realm. Possible explanations for this pattern are a recent chimpanzee expansion across the region and the interconnectedness of this population across at least the entirety of northern DRC.


Asunto(s)
Conducta Alimentaria , Pan troglodytes/fisiología , Comportamiento del Uso de la Herramienta , Animales , Hormigas , Abejas , República Democrática del Congo , Femenino , Masculino
11.
J Hum Evol ; 121: 1-11, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29685749

RESUMEN

Adaptations associated with shifting from a predominately forested habitat to a more open environment are considered a crucial step in hominin evolution. Understanding how chimpanzees, one of our closest-living relatives, are exposed to the selection pressures associated with living in a relatively sparse, hot, and dry environment can inform us about the relative importance of potential environmental stressors involved in adaptations to drier environments. We investigated the extent to which chimpanzees living in an extreme savanna habitat experience seasonal variability in either energy balance or thermoregulation (dehydration and heat exposure), as well as whether these potential environmental constraints are taxing to chimpanzee individuals. Specifically, we tested the hypothesis that savanna environments impose seasonally-relevant costs to chimpanzees. To this end, we collected 368 urine samples from one community of chimpanzees at Fongoli, Senegal, and measured c-peptide, creatinine, and cortisol as measures of physiological responses to environmental food, water, and heat constraints, respectively. We then evaluated the influence of climatic and phenological factors on these indicators. Results illustrated significant seasonal variation in all biomarkers, which corresponded to relevant ecological correlates. Furthermore, creatinine but not c-peptide correlated with cortisol levels, suggesting that chimpanzees in this environment endure periods of heat and dehydration stress, but are able to avoid stressful levels of negative energy balance. Using savanna chimpanzees as a referential model, our research lends support to the notion that thermoregulatory challenges were a significant factor in hominin evolution, and suggests these challenges may have overshadowed the challenges of maintaining adequate energetic balance during the expansion of the hominin range from wetter to drier environments.


Asunto(s)
Pradera , Pan troglodytes/fisiología , Estrés Fisiológico , Animales , Biomarcadores/análisis , Desecación , Conducta Alimentaria , Calor/efectos adversos , Masculino , Estaciones del Año , Senegal
12.
Am J Primatol ; 80(9): e22904, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30088683

RESUMEN

Demographic factors can strongly influence patterns of behavioral variation in animal societies. Traditionally, these factors are measured using longitudinal observation of habituated social groups, particularly in social animals like primates. Alternatively, noninvasive biomonitoring methods such as camera trapping can allow researchers to assess species occupancy, estimate population abundance, and study rare behaviors. However, measures of fine-scale demographic variation, such as those related to age and sex structure or subgrouping patterns, pose a greater challenge. Here, we compare demographic data collected from a community of habituated chimpanzees (Pan troglodytes verus) in the Taï Forest using two methods: camera trap videos and observational data from long-term records. By matching data on party size, seasonal variation in party size, measures of demographic composition, and changes over the study period from both sources, we compared the accuracy of camera trap records and long-term data to assess whether camera trap data could be used to assess such variables in populations of unhabituated chimpanzees. When compared to observational data, camera trap data tended to underestimate measures of party size, but revealed similar patterns of seasonal variation as well as similar community demographic composition (age/sex proportions) and dynamics (particularly emigration and deaths) during the study period. Our findings highlight the potential and limitations of camera trap surveys for estimating fine-scale demographic composition and variation in primates. Continuing development of field and statistical methods will further improve the usability of camera traps for demographic studies.


Asunto(s)
Ecología/métodos , Pan troglodytes/fisiología , Animales , Côte d'Ivoire , Demografía/métodos , Femenino , Masculino , Densidad de Población , Estaciones del Año
13.
Am J Primatol ; 79(7)2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28267880

RESUMEN

Empirical validations of survey methods for estimating animal densities are rare, despite the fact that only an application to a population of known density can demonstrate their reliability under field conditions and constraints. Here, we present a field validation of camera trapping in combination with spatially explicit capture-recapture (SECR) methods for enumerating chimpanzee populations. We used 83 camera traps to sample a habituated community of western chimpanzees (Pan troglodytes verus) of known community and territory size in Taï National Park, Ivory Coast, and estimated community size and density using spatially explicit capture-recapture models. We aimed to: (1) validate camera trapping as a means to collect capture-recapture data for chimpanzees; (2) validate SECR methods to estimate chimpanzee density from camera trap data; (3) compare the efficacy of targeting locations frequently visited by chimpanzees versus deploying cameras according to a systematic design; (4) evaluate the performance of SECR estimators with reduced sampling effort; and (5) identify sources of heterogeneity in detection probabilities. Ten months of camera trapping provided abundant capture-recapture data. All weaned individuals were detected, most of them multiple times, at both an array of targeted locations, and a systematic grid of cameras positioned randomly within the study area, though detection probabilities were higher at targeted locations. SECR abundance estimates were accurate and precise, and analyses of subsets of the data indicated that the majority of individuals in a community could be detected with as few as five traps deployed within their territory. Our results highlight the potential of camera trapping for cost-effective monitoring of chimpanzee populations.


Asunto(s)
Monitoreo del Ambiente/métodos , Pan troglodytes , Fotograbar , Animales , Côte d'Ivoire , Ambiente , Densidad de Población , Reproducibilidad de los Resultados
14.
Am J Primatol ; 79(3): 1-7, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27813136

RESUMEN

Wild chimpanzees regularly use tools, made from sticks, leaves, or stone, to find flexible solutions to the ecological challenges of their environment. Nevertheless, some studies suggest strong limitations in the tool-using capabilities of chimpanzees. In this context, we present the discovery of a newly observed tool-use behavior in a population of chimpanzees (Pan troglodytes verus) living in the Bakoun Classified Forest, Guinea, where a temporary research site was established for 15 months. Bakoun chimpanzees of every age-sex class were observed to fish for freshwater green algae, Spirogrya sp., from rivers, streams, and ponds using long sticks and twigs, ranging from 9 cm up to 4.31 m in length. Using remote camera trap footage from 11 different algae fishing sites within an 85-km2 study area, we found that algae fishing occurred frequently during the dry season and was non-existent during the rainy season. Chimpanzees were observed algae fishing for as little as 1 min to just over an hour, with an average duration of 9.09 min. We estimate that 364 g of Spirogyra algae could be retrieved in this time, based on human trials in the field. Only one other chimpanzee population living in Bossou, Guinea, has been described to customarily scoop algae from the surface of the water using primarily herbaceous tools. Here, we describe the new behavior found at Bakoun and compare it to the algae scooping observed in Bossou chimpanzees and the occasional variant reported in Odzala, Republic of the Congo. As these algae are reported to be high in protein, carbohydrates, and minerals, we hypothesize that chimpanzees are obtaining a nutritional benefit from this seasonally available resource.


Asunto(s)
Conducta Alimentaria , Pan troglodytes , Comportamiento del Uso de la Herramienta , Animales , Congo , Guinea , Microalgas , Estaciones del Año
15.
Am J Primatol ; 79(3): 1-12, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28095593

RESUMEN

Surveying endangered species is necessary to evaluate conservation effectiveness. Camera trapping and biometric computer vision are recent technological advances. They have impacted on the methods applicable to field surveys and these methods have gained significant momentum over the last decade. Yet, most researchers inspect footage manually and few studies have used automated semantic processing of video trap data from the field. The particular aim of this study is to evaluate methods that incorporate automated face detection technology as an aid to estimate site use of two chimpanzee communities based on camera trapping. As a comparative baseline we employ traditional manual inspection of footage. Our analysis focuses specifically on the basic parameter of occurrence where we assess the performance and practical value of chimpanzee face detection software. We found that the semi-automated data processing required only 2-4% of the time compared to the purely manual analysis. This is a non-negligible increase in efficiency that is critical when assessing the feasibility of camera trap occupancy surveys. Our evaluations suggest that our methodology estimates the proportion of sites used relatively reliably. Chimpanzees are mostly detected when they are present and when videos are filmed in high-resolution: the highest recall rate was 77%, for a false alarm rate of 2.8% for videos containing only chimpanzee frontal face views. Certainly, our study is only a first step for transferring face detection software from the lab into field application. Our results are promising and indicate that the current limitation of detecting chimpanzees in camera trap footage due to lack of suitable face views can be easily overcome on the level of field data collection, that is, by the combined placement of multiple high-resolution cameras facing reverse directions. This will enable to routinely conduct chimpanzee occupancy surveys based on camera trapping and semi-automated processing of footage. RESEARCH HIGHLIGHTS: Using semi-automated ape face detection technology for processing camera trap footage requires only 2-4% of the time compared to manual analysis and allows to estimate site use by chimpanzees relatively reliably.


Asunto(s)
Especies en Peligro de Extinción , Cara , Pan troglodytes , Reconocimiento de Normas Patrones Automatizadas , Animales , Recolección de Datos
16.
Am J Primatol ; 79(9)2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28671715

RESUMEN

African large mammals are under extreme pressure from unsustainable hunting and habitat loss. Certain traits make large mammals particularly vulnerable. These include late age at first reproduction, long inter-birth intervals, and low population density. Great apes are a prime example of such vulnerability, exhibiting all of these traits. Here we assess the rate of population change for the western chimpanzee, Pan troglodytes verus, over a 24-year period. As a proxy for change in abundance, we used transect nest count data from 20 different sites archived in the IUCN SSC A.P.E.S. database, representing 25,000 of the estimated remaining 35,000 western chimpanzees. For each of the 20 sites, datasets for 2 different years were available. We estimated site-specific and global population change using Generalized Linear Models. At 12 of these sites, we detected a significant negative trend. The estimated change in the subspecies abundance, as approximated by nest encounter rate, yielded a 6% annual decline and a total decline of 80.2% over the study period from 1990 to 2014. This also resulted in a reduced geographic range of 20% (657,600 vs. 524,100 km2 ). Poverty, civil conflict, disease pandemics, agriculture, extractive industries, infrastructure development, and lack of law enforcement, are some of the many reasons for the magnitude of threat. Our status update triggered the uplisting of the western chimpanzee to "Critically Endangered" on the IUCN Red List. In 2017, IUCN will start updating the 2003 Action Plan for western chimpanzees and will provide a consensus blueprint for what is needed to save this subspecies. We make a plea for greater commitment to conservation in West Africa across sectors. Needed especially is more robust engagement by national governments, integration of conservation priorities into the private sector and development planning across the region and sustained financial support from donors.


Asunto(s)
Ecosistema , Pan troglodytes , Animales , Conservación de los Recursos Naturales , Especies en Peligro de Extinción , Densidad de Población
18.
J Hum Evol ; 101: 1-16, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27886808

RESUMEN

The isotope ecology of great apes is a useful reference for palaeodietary reconstructions in fossil hominins. As extant apes live in C3-dominated habitats, variation in isotope signatures is assumed to be low compared to hominoids exploiting C4-plant resources. However, isotopic differences between sites and between and within individuals are poorly understood due to the lack of vegetation baseline data. In this comparative study, we included all species of free-ranging African great apes (Pan troglodytes, Pan paniscus, Gorilla sp.). First, we explore differences in isotope baselines across different habitats and whether isotopic signatures in apes can be related to feeding niches (faunivory and folivory). Secondly, we illustrate how stable isotopic variations within African ape populations compare to other extant and extinct primates and discuss possible implications for dietary flexibility. Using 701 carbon and nitrogen isotope data points resulting from 148 sectioned hair samples and an additional collection of 189 fruit samples, we compare six different great ape sites. We investigate the relationship between vegetation baselines and climatic variables, and subsequently correct great ape isotope data to a standardized plant baseline from the respective sites. We obtained temporal isotopic profiles of individual animals by sectioning hair along its growth trajectory. Isotopic signatures of great apes differed between sites, mainly as vegetation isotope baselines were correlated with site-specific climatic conditions. We show that controlling for plant isotopic characteristics at a given site is essential for faunal data interpretation. While accounting for plant baseline effects, we found distinct isotopic profiles for each great ape population. Based on evidence from habituated groups and sympatric great ape species, these differences could possibly be related to faunivory and folivory. Dietary flexibility in apes varied, but temporal variation was overall lower than in fossil hominins and extant baboons, shifting from C3 to C4-resources, providing new perspectives on comparisons between extinct and extant primates.


Asunto(s)
Isótopos de Carbono/análisis , Dieta , Gorilla gorilla/fisiología , Cabello/química , Isótopos de Nitrógeno/análisis , Pan paniscus/fisiología , Pan troglodytes/fisiología , Animales , Ecología , Conducta Alimentaria , Fósiles , Frutas/anatomía & histología , Papio , Plantas
19.
Front Zool ; 13: 34, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27507999

RESUMEN

BACKGROUND: Assessing the range and territories of wild mammals traditionally requires years of data collection and often involves directly following individuals or using tracking devices. Indirect and non-invasive methods of monitoring wildlife have therefore emerged as attractive alternatives due to their ability to collect data at large spatiotemporal scales using standardized remote sensing technologies. Here, we investigate the use of two novel passive acoustic monitoring (PAM) systems used to capture long-distance sounds produced by the same species, wild chimpanzees (Pan troglodytes), living in two different habitats: forest (Taï, Côte d'Ivoire) and savanna-woodland (Issa valley, Tanzania). RESULTS: Using data collected independently at two field sites, we show that detections of chimpanzee sounds on autonomous recording devices were predicted by direct and indirect indices of chimpanzee presence. At Taï, the number of chimpanzee buttress drums detected on recording devices was positively influenced by the number of hours chimpanzees were seen ranging within a 1 km radius of a device. We observed a similar but weaker relationship within a 500 m radius. At Issa, the number of indirect chimpanzee observations positively predicted detections of chimpanzee loud calls on a recording device within a 500 m but not a 1 km radius. Moreover, using just seven months of PAM data, we could locate two known chimpanzee communities in Taï and observed monthly spatial variation in the center of activity for each group. CONCLUSIONS: Our work shows PAM is a promising new tool for gathering information about the ranging behavior and habitat use of chimpanzees and can be easily adopted for other large territorial mammals, provided they produce long-distance acoustic signals that can be captured by autonomous recording devices (e.g., lions and wolves). With this study we hope to promote more interdisciplinary research in PAM to help overcome its challenges, particularly in data processing, to improve its wider application.

20.
Am J Primatol ; 78(12): 1326-1343, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27463835

RESUMEN

The role of spatial scale in ecological pattern formation such as the geographical distribution of species has been a major theme in research for decades. Much progress has been made on identifying spatial scales of habitat influence on species distribution. Generally, the effect of a predictor variable on a response is evaluated over multiple, discrete spatial scales to identify an optimal scale of influence. However, the idea to identify one optimal scale of predictor influence is misleading. Species-environment relationships across scales are usually sigmoid increasing or decreasing rather than humped-shaped, because environmental conditions are generally highly autocorrelated. Here, we use nest count data on bonobos (Pan paniscus) to build distribution models which simultaneously evaluate the influence of several predictors at multiple spatial scales. More specifically, we used forest structure, availability of fruit trees and terrestrial herbaceous vegetation (THV) to reflect environmental constraints on bonobo ranging, feeding and nesting behaviour, respectively. A large number of models fitted the data equally well and revealed sigmoidal shapes for bonobo-environment relationships across scales. The influence of forest structure increased with distance and became particularly important, when including a neighbourhood of at least 750 m around observation points; for fruit availability and THV, predictor influence decreased with increasing distance and was mainly influential below 600 and 300 m, respectively. There was almost no difference in model fit, when weighing predictor values within the extraction neighbourhood by distance compared to simply taking the arithmetic mean of predictor values. The spatial scale models provide information on bonobo nesting preferences and are useful for the understanding of bonobo ecology and conservation, such as in the context of mitigating the impact of logging. The proposed approach is flexible and easily applicable to a wide range of species, response and predictor variables and over diverse spatial scales and ecological settings.


Asunto(s)
Ecología , Comportamiento de Nidificación , Pan paniscus , Animales , Ecosistema , Bosques
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA