Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Hum Genet ; 111(2): 364-382, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38272033

RESUMEN

The calcium/calmodulin-dependent protein kinase type 2 (CAMK2) family consists of four different isozymes, encoded by four different genes-CAMK2A, CAMK2B, CAMK2G, and CAMK2D-of which the first three have been associated recently with neurodevelopmental disorders. CAMK2D is one of the major CAMK2 proteins expressed in the heart and has been associated with cardiac anomalies. Although this CAMK2 isoform is also known to be one of the major CAMK2 subtypes expressed during early brain development, it has never been linked with neurodevelopmental disorders until now. Here we show that CAMK2D plays an important role in neurodevelopment not only in mice but also in humans. We identified eight individuals harboring heterozygous variants in CAMK2D who display symptoms of intellectual disability, delayed speech, behavioral problems, and dilated cardiomyopathy. The majority of the variants tested lead to a gain of function (GoF), which appears to cause both neurological problems and dilated cardiomyopathy. In contrast, loss-of-function (LoF) variants appear to induce only neurological symptoms. Together, we describe a cohort of individuals with neurodevelopmental disorders and cardiac anomalies, harboring pathogenic variants in CAMK2D, confirming an important role for the CAMK2D isozyme in both heart and brain function.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cardiomiopatía Dilatada , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Animales , Humanos , Ratones , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corazón , Trastornos del Neurodesarrollo/genética
2.
Am J Hum Genet ; 111(7): 1352-1369, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38866022

RESUMEN

Primary proteasomopathies have recently emerged as a new class of rare early-onset neurodevelopmental disorders (NDDs) caused by pathogenic variants in the PSMB1, PSMC1, PSMC3, or PSMD12 proteasome genes. Proteasomes are large multi-subunit protein complexes that maintain cellular protein homeostasis by clearing ubiquitin-tagged damaged, misfolded, or unnecessary proteins. In this study, we have identified PSMD11 as an additional proteasome gene in which pathogenic variation is associated with an NDD-causing proteasomopathy. PSMD11 loss-of-function variants caused early-onset syndromic intellectual disability and neurodevelopmental delay with recurrent obesity in 10 unrelated children. Our findings demonstrate that the cognitive impairment observed in these individuals could be recapitulated in Drosophila melanogaster with depletion of the PMSD11 ortholog Rpn6, which compromised reversal learning. Our investigations in subject samples further revealed that PSMD11 loss of function resulted in impaired 26S proteasome assembly and the acquisition of a persistent type I interferon (IFN) gene signature, mediated by the integrated stress response (ISR) protein kinase R (PKR). In summary, these data identify PSMD11 as an additional member of the growing family of genes associated with neurodevelopmental proteasomopathies and provide insights into proteasomal biology in human health.


Asunto(s)
Drosophila melanogaster , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Obesidad , Complejo de la Endopetidasa Proteasomal , Adolescente , Animales , Niño , Preescolar , Femenino , Humanos , Masculino , Drosophila melanogaster/genética , Discapacidad Intelectual/genética , Interferones/metabolismo , Interferones/genética , Mutación con Pérdida de Función , Trastornos del Neurodesarrollo/genética , Obesidad/genética , Fenotipo , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo
3.
Am J Hum Genet ; 111(3): 487-508, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38325380

RESUMEN

Pathogenic variants in multiple genes on the X chromosome have been implicated in syndromic and non-syndromic intellectual disability disorders. ZFX on Xp22.11 encodes a transcription factor that has been linked to diverse processes including oncogenesis and development, but germline variants have not been characterized in association with disease. Here, we present clinical and molecular characterization of 18 individuals with germline ZFX variants. Exome or genome sequencing revealed 11 variants in 18 subjects (14 males and 4 females) from 16 unrelated families. Four missense variants were identified in 11 subjects, with seven truncation variants in the remaining individuals. Clinical findings included developmental delay/intellectual disability, behavioral abnormalities, hypotonia, and congenital anomalies. Overlapping and recurrent facial features were identified in all subjects, including thickening and medial broadening of eyebrows, variations in the shape of the face, external eye abnormalities, smooth and/or long philtrum, and ear abnormalities. Hyperparathyroidism was found in four families with missense variants, and enrichment of different tumor types was observed. In molecular studies, DNA-binding domain variants elicited differential expression of a small set of target genes relative to wild-type ZFX in cultured cells, suggesting a gain or loss of transcriptional activity. Additionally, a zebrafish model of ZFX loss displayed an altered behavioral phenotype, providing additional evidence for the functional significance of ZFX. Our clinical and experimental data support that variants in ZFX are associated with an X-linked intellectual disability syndrome characterized by a recurrent facial gestalt, neurocognitive and behavioral abnormalities, and an increased risk for congenital anomalies and hyperparathyroidism.


Asunto(s)
Hiperparatiroidismo , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Masculino , Femenino , Animales , Humanos , Discapacidad Intelectual/patología , Pez Cebra/genética , Mutación Missense/genética , Factores de Transcripción/genética , Fenotipo , Trastornos del Neurodesarrollo/genética
4.
Genet Med ; 26(6): 101120, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38469793

RESUMEN

PURPOSE: Imbalances in protein homeostasis affect human brain development, with the ubiquitin-proteasome system (UPS) and autophagy playing crucial roles in neurodevelopmental disorders (NDD). This study explores the impact of biallelic USP14 variants on neurodevelopment, focusing on its role as a key hub connecting UPS and autophagy. METHODS: Here, we identified biallelic USP14 variants in 4 individuals from 3 unrelated families: 1 fetus, a newborn with a syndromic NDD and 2 siblings affected by a progressive neurological disease. Specifically, the 2 siblings from the latter family carried 2 compound heterozygous variants c.8T>C p.(Leu3Pro) and c.988C>T p.(Arg330∗), whereas the fetus had a homozygous frameshift c.899_902del p.(Lys300Serfs∗24) variant, and the newborn patient harbored a homozygous frameshift c.233_236del p.(Leu78Glnfs∗11) variant. Functional studies were conducted using sodium dodecyl-sulfate polyacrylamide gel electrophoresis, western blotting, and mass spectrometry analyses in both patient-derived and CRISPR-Cas9-generated cells. RESULTS: Our investigations indicated that the USP14 variants correlated with reduced N-terminal methionine excision, along with profound alterations in proteasome, autophagy, and mitophagy activities. CONCLUSION: Biallelic USP14 variants in NDD patients perturbed protein degradation pathways, potentially contributing to disorder etiology. Altered UPS, autophagy, and mitophagy activities underscore the intricate interplay, elucidating their significance in maintaining proper protein homeostasis during brain development.


Asunto(s)
Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Femenino , Masculino , Alelos , Autofagia/genética , Ubiquitina Tiolesterasa/genética , Recién Nacido , Complejo de la Endopetidasa Proteasomal/genética , Linaje , Homocigoto , Predisposición Genética a la Enfermedad , Mutación/genética
5.
Med Sci (Paris) ; 40(2): 176-185, 2024 Feb.
Artículo en Francés | MEDLINE | ID: mdl-38411426

RESUMEN

The ubiquitin-proteasome system (UPS) is a conserved degradation pathway in eukaryotes, playing a central role in various cellular processes, including maintaining protein homeostasis, regulating the cell cycle and signaling pathways, as well as orchestrating cell survival and death. Proteins targeted for UPS-mediated degradation undergo ubiquitin chain modification before being degraded by 26S proteasomes. Recently, a correlation has emerged between pathogenic proteasome variants and the onset of neurodevelopmental disorders. Termed "neurodevelopmental proteasomopathies", these syndromes are rare and characterized by delayed psychomotor development, behavioral disorders, facial dysmorphia, and multisystemic anomalies. In this review, we examine current knowledge on proteasomal dysfunctions and assess their relevance in the search for biomarkers for the diagnosis and potential treatment of these syndromic proteasomopathies.


Title: Protéasomopathies neurodéveloppementales : une nouvelle classe de maladies du neurodéveloppement causées par une dysfonction du protéasome. Abstract: Le système ubiquitine-protéasome (UPS) est une voie conservée chez les eucaryotes qui permet la dégradation, par les protéasomes, des protéines modifiées par l'ubiquitine. Récemment, une corrélation entre des variants pathogènes de gènes codant le protéasome et l'émergence de nouvelles maladies avec troubles neurodéveloppementaux, dénommés « protéasomopathies neurodéveloppementales ¼, a été mise en évidence. Ces maladies rares se manifestent par des retards psychomoteurs, des troubles du comportement, des dysmorphies faciales et des anomalies multi-systémiques. Dans cette synthèse, nous répertorions les biomarqueurs spécifiques d'une dysfonction protéasomale et nous discutons de leur pertinence pour le diagnostic et les traitements de ces troubles neurodéveloppementaux.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Humanos , Citoplasma , Ciclo Celular , División Celular
6.
Res Sq ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38659935

RESUMEN

The roles of sex hormones such as estradiol, testosterone, and sex hormone-binding globulin (SHBG) in the etiology of lung and colorectal cancers in women, among the most common cancers after breast cancer, are unclear. This Mendelian randomization (MR) study evaluated such potential causal associations in women of European ancestry. We used summary statistics data from genome-wide association studies (GWASs) on sex hormones and from the Trøndelag Health (HUNT) Study and large consortia on cancers. There was suggestive evidence of genetically predicted 1-standard deviation increase in total testosterone levels being associated with a lower risk of lung non-adenocarcinoma (hazard ratio (HR) 0.60, 95% CI 0.37-0.98) in the HUNT Study. However, this was not confirmed by using data from a larger consortium. In general, we did not find convincing evidence to support a causal role of sex hormones on risk of lung and colorectal cancers in women of European ancestry.

7.
Front Cell Dev Biol ; 12: 1370905, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39071803

RESUMEN

Neurodevelopmental proteasomopathies constitute a recently defined class of rare Mendelian disorders, arising from genomic alterations in proteasome-related genes. These alterations result in the dysfunction of proteasomes, which are multi-subunit protein complexes essential for maintaining cellular protein homeostasis. The clinical phenotype of these diseases manifests as a syndromic association involving impaired neural development and multisystem abnormalities, notably craniofacial anomalies and malformations of the cardiac outflow tract (OFT). These observations suggest that proteasome loss-of-function variants primarily affect specific embryonic cell types which serve as origins for both craniofacial structures and the conotruncal portion of the heart. In this hypothesis article, we propose that neural crest cells (NCCs), a highly multipotent cell population, which generates craniofacial skeleton, mesenchyme as well as the OFT of the heart, in addition to many other derivatives, would exhibit a distinctive vulnerability to protein homeostasis perturbations. Herein, we introduce the diverse cellular compensatory pathways activated in response to protein homeostasis disruption and explore their potential implications for NCC physiology. Altogether, the paper advocates for investigating proteasome biology within NCCs and their early cranial and cardiac derivatives, offering a rationale for future exploration and laying the initial groundwork for therapeutic considerations.

8.
EBioMedicine ; 104: 105146, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38749303

RESUMEN

BACKGROUND: Consumption of fibre, fruits and vegetables have been linked with lower colorectal cancer (CRC) risk. A genome-wide gene-environment (G × E) analysis was performed to test whether genetic variants modify these associations. METHODS: A pooled sample of 45 studies including up to 69,734 participants (cases: 29,896; controls: 39,838) of European ancestry were included. To identify G × E interactions, we used the traditional 1--degree-of-freedom (DF) G × E test and to improve power a 2-step procedure and a 3DF joint test that investigates the association between a genetic variant and dietary exposure, CRC risk and G × E interaction simultaneously. FINDINGS: The 3-DF joint test revealed two significant loci with p-value <5 × 10-8. Rs4730274 close to the SLC26A3 gene showed an association with fibre (p-value: 2.4 × 10-3) and G × fibre interaction with CRC (OR per quartile of fibre increase = 0.87, 0.80, and 0.75 for CC, TC, and TT genotype, respectively; G × E p-value: 1.8 × 10-7). Rs1620977 in the NEGR1 gene showed an association with fruit intake (p-value: 1.0 × 10-8) and G × fruit interaction with CRC (OR per quartile of fruit increase = 0.75, 0.65, and 0.56 for AA, AG, and GG genotype, respectively; G × E -p-value: 0.029). INTERPRETATION: We identified 2 loci associated with fibre and fruit intake that also modify the association of these dietary factors with CRC risk. Potential mechanisms include chronic inflammatory intestinal disorders, and gut function. However, further studies are needed for mechanistic validation and replication of findings. FUNDING: National Institutes of Health, National Cancer Institute. Full funding details for the individual consortia are provided in acknowledgments.


Asunto(s)
Neoplasias Colorrectales , Fibras de la Dieta , Frutas , Interacción Gen-Ambiente , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Verduras , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/etiología , Fibras de la Dieta/administración & dosificación , Genotipo , Dieta , Masculino , Femenino , Factores de Riesgo
9.
medRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38293138

RESUMEN

Neurodevelopmental proteasomopathies represent a distinctive category of neurodevelopmental disorders (NDD) characterized by genetic variations within the 26S proteasome, a protein complex governing eukaryotic cellular protein homeostasis. In our comprehensive study, we identified 23 unique variants in PSMC5 , which encodes the AAA-ATPase proteasome subunit PSMC5/Rpt6, causing syndromic NDD in 38 unrelated individuals. Overexpression of PSMC5 variants altered human hippocampal neuron morphology, while PSMC5 knockdown led to impaired reversal learning in flies and loss of excitatory synapses in rat hippocampal neurons. PSMC5 loss-of-function resulted in abnormal protein aggregation, profoundly impacting innate immune signaling, mitophagy rates, and lipid metabolism in affected individuals. Importantly, targeting key components of the integrated stress response, such as PKR and GCN2 kinases, ameliorated immune dysregulations in cells from affected individuals. These findings significantly advance our understanding of the molecular mechanisms underlying neurodevelopmental proteasomopathies, provide links to research in neurodegenerative diseases, and open up potential therapeutic avenues.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA