Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(7): 1821-1835.e16, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33667349

RESUMEN

Human monoclonal antibodies are safe, preventive, and therapeutic tools that can be rapidly developed to help restore the massive health and economic disruption caused by the coronavirus disease 2019 (COVID-19) pandemic. By single-cell sorting 4,277 SARS-CoV-2 spike protein-specific memory B cells from 14 COVID-19 survivors, 453 neutralizing antibodies were identified. The most potent neutralizing antibodies recognized the spike protein receptor-binding domain, followed in potency by antibodies that recognize the S1 domain, the spike protein trimer, and the S2 subunit. Only 1.4% of them neutralized the authentic virus with a potency of 1-10 ng/mL. The most potent monoclonal antibody, engineered to reduce the risk of antibody-dependent enhancement and prolong half-life, neutralized the authentic wild-type virus and emerging variants containing D614G, E484K, and N501Y substitutions. Prophylactic and therapeutic efficacy in the hamster model was observed at 0.25 and 4 mg/kg respectively in absence of Fc functions.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Neutralizantes/administración & dosificación , Anticuerpos Antivirales/administración & dosificación , Linfocitos B/inmunología , COVID-19 , Convalecencia , Células 3T3 , Animales , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Linfocitos B/citología , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/terapia , Chlorocebus aethiops , Modelos Animales de Enfermedad , Femenino , Células HEK293 , Humanos , Fragmentos Fc de Inmunoglobulinas/inmunología , Masculino , Ratones , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
2.
PLoS Biol ; 21(6): e3002172, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37379333

RESUMEN

The basement membrane (BM) is a specialized extracellular matrix (ECM), which underlies or encases developing tissues. Mechanical properties of encasing BMs have been shown to profoundly influence the shaping of associated tissues. Here, we use the migration of the border cells (BCs) of the Drosophila egg chamber to unravel a new role of encasing BMs in cell migration. BCs move between a group of cells, the nurse cells (NCs), that are enclosed by a monolayer of follicle cells (FCs), which is, in turn, surrounded by a BM, the follicle BM. We show that increasing or reducing the stiffness of the follicle BM, by altering laminins or type IV collagen levels, conversely affects BC migration speed and alters migration mode and dynamics. Follicle BM stiffness also controls pairwise NC and FC cortical tension. We propose that constraints imposed by the follicle BM influence NC and FC cortical tension, which, in turn, regulate BC migration. Encasing BMs emerge as key players in the regulation of collective cell migration during morphogenesis.


Asunto(s)
Colágeno Tipo IV , Drosophila , Animales , Constricción , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Movimiento Celular , Drosophila/metabolismo
3.
Eur J Immunol ; 52(8): 1362-1365, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35527391

RESUMEN

Robust methods for manipulation of human B cells, isolated from healthy donors and patients with B cell disorders, has the potential to significantly accelerate B cell research. Our work describes a step-by-step protocol to perform electroporation-based screening of gene function in B cells through the use of Cas9 ribonuclecomplexes and in vitro produced mRNA.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Electroporación , Edición Génica/métodos , Expresión Génica , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Pharmacol Res ; 174: 105965, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34732370

RESUMEN

Survival and expansion of malignant B cells in chronic lymphocytic leukemia (CLL) are highly dependent both on intrinsic defects in the apoptotic machinery and on the interactions with cells and soluble factors in the lymphoid microenvironment. The adaptor protein p66Shc is a negative regulator of antigen receptor signaling, chemotaxis and apoptosis whose loss in CLL B cells contributes to their extended survival and poor prognosis. Hence, the identification of compounds that restore p66Shc expression and function in malignant B cells may pave the way to a new therapeutic approach for CLL. Here we show that a novel oxazepine-based compound (OBC-1) restores p66Shc expression in primary human CLL cells by promoting JNK-dependent STAT4 activation without affecting normal B cells. Moreover, we demonstrate that the potent pro-apoptotic activity of OBC-1 in human leukemic cells directly correlates with p66Shc expression levels and is abrogated when p66Shc is genetically deleted. Preclinical testing of OBC-1 and the novel analogue OBC-2 in Eµ-TCL1 tumor-bearing mice resulted in a significantly longer overall survival and a reduction of the tumor burden in the spleen and peritoneum. Interestingly, OBCs promote leukemic cell mobilization from the spleen to the blood, which correlates with upregulation of sphingosine-1-phosphate receptor expression. In summary, our work identifies OBCs as a promising class of compounds that, by boosting p66Shc expression through the activation of the JNK/STAT4 pathway, display dual therapeutic effects for CLL intervention, namely the ability to mobilize cells from secondary lymphoid organs and a potent pro-apoptotic activity against circulating leukemic cells.


Asunto(s)
Antineoplásicos/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Oxazepinas/uso terapéutico , Animales , Antineoplásicos/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Ratones Transgénicos , Oxazepinas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Factor de Transcripción STAT4/genética , Factor de Transcripción STAT4/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo
5.
Blood ; 130(18): 2006-2017, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-28931525

RESUMEN

The high proportion of long-term nonprogressors among chronic lymphocytic leukemia (CLL) patients suggests the existence of a regulatory network that restrains the proliferation of tumor B cells. The identification of molecular determinants composing such network is hence fundamental for our understanding of CLL pathogenesis. Based on our previous finding establishing a deficiency in the signaling adaptor p66Shc in CLL cells, we undertook to identify unique phenotypic traits caused by this defect. Here we show that a lack of p66Shc shapes the transcriptional profile of CLL cells and leads to an upregulation of the surface receptor ILT3, the immunoglobulin-like transcript 3 that is normally found on myeloid cells. The ectopic expression of ILT3 in CLL was a distinctive feature of neoplastic B cells and hematopoietic stem cells, thus identifying ILT3 as a selective marker of malignancy in CLL and the first example of phenotypic continuity between mature CLL cells and their progenitors in the bone marrow. ILT3 expression in CLL was found to be driven by Deltex1, a suppressor of antigen receptor signaling in lymphocytes. Triggering of ILT3 inhibited the activation of Akt kinase upon B-cell receptor (BCR) stimulation. This effect was achieved through the dynamic coalescence of ILT3, BCRs, and phosphatidylinositol-3,4,5-trisphosphate 5-phosphatase 1 into inhibitory clusters at the cell surface. Collectively, our findings identify ILT3 as a signature molecule of p66Shc deficiency in CLL and indicate that ILT3 may functionally contribute to a regulatory network controlling tumor progression by suppressing the Akt pathway.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/enzimología , Leucemia Linfocítica Crónica de Células B/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Receptores de Superficie Celular/metabolismo , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Activación Enzimática , Regulación Leucémica de la Expresión Génica , Humanos , Inmunomodulación/genética , Glicoproteínas de Membrana , Receptores de Superficie Celular/genética , Receptores Inmunológicos , Transducción de Señal , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/deficiencia , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo , Células Madre/metabolismo , Transcriptoma/genética , Ubiquitina-Proteína Ligasas/metabolismo , Regulación hacia Arriba/genética
6.
Haematologica ; 104(10): 2040-2052, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30819907

RESUMEN

The Shc family adaptor p66Shc acts as a negative regulator of proliferative and survival signals triggered by the B-cell receptor and, by enhancing the production of reactive oxygen species, promotes oxidative stress-dependent apoptosis. Additionally, p66Shc controls the expression and function of chemokine receptors that regulate lymphocyte traffic. Chronic lymphocytic leukemia cells have a p66Shc expression defect which contributes to their extended survival and correlates with poor prognosis. We analyzed the impact of p66Shc ablation on disease severity and progression in the Eµ-TCL1 mouse model of chronic lymphocytic leukemia. We showed that Eµ-TCL1/p66Shc-/- mice developed an aggressive disease that had an earlier onset, occurred at a higher incidence and led to earlier death compared to that in Eµ-TCL1 mice. Eµ-TCL1/p66Shc-/- mice displayed substantial leukemic cell accumulation in both nodal and extranodal sites. The target organ selectivity correlated with upregulation of chemokine receptors whose ligands are expressed therein. This also applied to chronic lymphocytic leukemia cells, where chemokine receptor expression and extent of organ infiltration were found to correlate inversely with these cells' level of p66Shc expression. p66Shc expression declined with disease progression in Eµ-TCL1 mice and could be restored by treatment with the Bruton tyrosine kinase inhibitor ibrutinib. Our results highlight p66Shc deficiency as an important factor in the progression and severity of chronic lymphocytic leukemia and underscore p66Shc expression as a relevant therapeutic target.


Asunto(s)
Carcinogénesis/metabolismo , Leucemia Linfocítica Crónica de Células B/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Experimentales/metabolismo , Receptores de Quimiocina/metabolismo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/deficiencia , Animales , Carcinogénesis/genética , Carcinogénesis/patología , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Neoplasias Experimentales/genética , Neoplasias Experimentales/patología , Receptores de Quimiocina/genética , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src/metabolismo
7.
Dev Biol ; 409(1): 55-71, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26542012

RESUMEN

Midbrain dopaminergic (mDA) neurons modulate various motor and cognitive functions, and their dysfunction or degeneration has been implicated in several psychiatric diseases. Both Sonic Hedgehog (Shh) and Wnt signaling pathways have been shown to be essential for normal development of mDA neurons. Primary cilia are critical for the development of a number of structures in the brain by serving as a hub for essential developmental signaling cascades, but their role in the generation of mDA neurons has not been examined. We analyzed mutant mouse lines deficient in the intraflagellar transport protein IFT88, which is critical for primary cilia function. Conditional inactivation of Ift88 in the midbrain after E9.0 results in progressive loss of primary cilia, a decreased size of the mDA progenitor domain, and a reduction in mDA neurons. We identified Shh signaling as the primary cause of these defects, since conditional inactivation of the Shh signaling pathway after E9.0, through genetic ablation of Gli2 and Gli3 in the midbrain, results in a phenotype basically identical to the one seen in Ift88 conditional mutants. Moreover, the expansion of the mDA progenitor domain observed when Shh signaling is constitutively activated does not occur in absence of Ift88. In contrast, clusters of Shh-responding progenitors are maintained in the ventral midbrain of the hypomorphic Ift88 mouse mutant, cobblestone. Despite the residual Shh signaling, the integrity of the mDA progenitor domain is severely disturbed, and consequently very few mDA neurons are generated in cobblestone mutants. Our results identify for the first time a crucial role of primary cilia in the induction of mDA progenitors, define a narrow time window in which Shh-mediated signaling is dependent upon normal primary cilia function for this purpose, and suggest that later Wnt signaling-dependent events act independently of primary cilia.


Asunto(s)
Cilios/metabolismo , Neuronas Dopaminérgicas/metabolismo , Embrión de Mamíferos/citología , Proteínas Hedgehog/metabolismo , Mesencéfalo/citología , Mesencéfalo/embriología , Neurogénesis , Animales , Cilios/ultraestructura , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis/genética , Neuroglía/metabolismo , Fenotipo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/genética , Receptor Smoothened , Células Madre/citología , Células Madre/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas Wnt/metabolismo , Proteína Gli2 con Dedos de Zinc , Proteína Gli3 con Dedos de Zinc
8.
Proc Natl Acad Sci U S A ; 111(50): 17965-70, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25453106

RESUMEN

The use of neutralizing antibodies to identify the most effective antigen has been proposed as a strategy to design vaccines capable of eliciting protective B-cell immunity. In this study, we analyzed the human antibody response to cytomegalovirus (human cytomegalovirus, HCMV) infection and found that antibodies to glycoprotein (g)B, a surface glycoprotein that has been developed as a HCMV vaccine, were primarily nonneutralizing. In contrast, most of the antibodies to the complex formed by gH, gL, protein (p)UL128, pUL130, and pUL131 (the gHgLpUL128L pentamer) neutralized HCMV infection with high potency. Based on this analysis, we developed a single polycistronic vector encoding the five pentamer genes separated by "self-cleaving" 2A peptides to generate a stably transfected CHO cell line constitutively secreting high levels of recombinant pentamer that displayed the functional antigenic sites targeted by human neutralizing antibodies. Immunization of mice with the pentamer formulated with different adjuvants elicited HCMV neutralizing antibody titers that persisted to high levels over time and that were a hundred- to thousand-fold higher than those found in individuals that recovered from primary HCMV infection. Sera from mice immunized with the pentamer vaccine neutralized infection of both epithelial cells and fibroblasts and prevented cell-to-cell spread and viral dissemination from endothelial cells to leukocytes. Neutralizing monoclonal antibodies from immunized mice showed the same potency as human antibodies and targeted the same as well as additional sites on the pentamer. These results illustrate with a relevant example a general and practical approach of analytic vaccinology for the development of subunit vaccines against complex pathogens.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Vacunas contra Citomegalovirus/inmunología , Diseño de Fármacos , Animales , Anticuerpos Monoclonales/inmunología , Antígenos Virales/aislamiento & purificación , Células CHO , Cricetinae , Cricetulus , Ensayo de Inmunoadsorción Enzimática , Vectores Genéticos/genética , Células HEK293 , Humanos , Ratones , Estadísticas no Paramétricas , Vacunas de Subunidad/inmunología
9.
eNeuro ; 11(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39160074

RESUMEN

Adaptive behavior relies on efficient cognitive control. The anterior cingulate cortex (ACC) is a key node within the executive prefrontal network. The reciprocal connectivity between the locus ceruleus (LC) and ACC is thought to support behavioral reorganization triggered by the detection of an unexpected change. We transduced LC neurons with either excitatory or inhibitory chemogenetic receptors in adult male rats and trained rats on a spatial task. Subsequently, we altered LC activity and confronted rats with an unexpected change of reward locations. In a new spatial context, rats with decreased noradrenaline (NA) in the ACC entered unbaited maze arms more persistently which was indicative of perseveration. In contrast, the suppression of the global NA transmission reduced perseveration. Neither chemogenetic manipulation nor inactivation of the ACC by muscimol affected the rate of learning, possibly due to partial virus transduction of the LC neurons and/or the compensatory engagement of other prefrontal regions. Importantly, we observed behavioral deficits in rats with LC damage caused by virus injection. The latter finding highlights the importance of careful histological assessment of virus-transduced brain tissue as inadvertent damage of the targeted cell population due to virus neurotoxicity or other factors might cause unwanted side effects. Although the specific role of ACC in the flexibility of spatial behavior has not been convincingly demonstrated, our results support the beneficial role of noradrenergic transmission for an optimal function of the ACC. Overall, our findings suggest the LC exerts the projection-specific modulation of neural circuits mediating the flexibility of spatial behavior.


Asunto(s)
Giro del Cíngulo , Locus Coeruleus , Norepinefrina , Conducta Espacial , Animales , Masculino , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiología , Norepinefrina/metabolismo , Giro del Cíngulo/efectos de los fármacos , Giro del Cíngulo/fisiología , Conducta Espacial/fisiología , Conducta Espacial/efectos de los fármacos , Ratas , Muscimol/farmacología , Aprendizaje por Laberinto/fisiología , Aprendizaje por Laberinto/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Neuronas Adrenérgicas/efectos de los fármacos , Neuronas Adrenérgicas/fisiología
10.
Semin Hematol ; 61(3): 155-162, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38493076

RESUMEN

Chronic lymphocytic leukemia (CLL) cells circulate between peripheral (PB) blood and lymph node (LN) compartments, and strictly depend on microenvironmental factors for proliferation, survival and drug resistance. All cancer cells display metabolic reprogramming and CLL is no exception - though the inert status of the PB CLL cells has hampered detailed insight into these processes. We summarize previous work on reactive oxygen species (ROS), oxidative stress, and hypoxia, as well as the important roles of Myc, and PI3K/Akt/mTor pathways. In vitro co-culture systems and gene expression analyses have provided a partial picture of CLL LN metabolism. New broad omics techniques allow to obtain molecular and also single-cell level understanding of CLL plasticity and metabolic reprogramming. We summarize recent developments and describe the new concept of glutamine addiction for CLL, which may hold therapeutic promise.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Microambiente Tumoral , Humanos , Leucemia Linfocítica Crónica de Células B/metabolismo , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Leucemia Linfocítica Crónica de Células B/patología , Terapia Molecular Dirigida/métodos , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Reprogramación Metabólica
11.
Mol Oncol ; 18(7): 1777-1794, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38115544

RESUMEN

Glucose catabolism, one of the essential pathways sustaining cellular bioenergetics, has been widely studied in the context of tumors. Nevertheless, the function of various branches of glucose metabolism that stem from 'classical' glycolysis have only been partially explored. This review focuses on discussing general mechanisms and pathological implications of glycolysis and its branching pathways in the biology of B cell malignancies. We summarize here what is known regarding pentose phosphate, hexosamine, serine biosynthesis, and glycogen synthesis pathways in this group of tumors. Despite most findings have been based on malignant B cells themselves, we also discuss the role of glucose metabolism in the tumor microenvironment, with a focus on T cells. Understanding the contribution of glycolysis branching pathways and how they are hijacked in B cell malignancies will help to dissect the role they have in sustaining the dissemination and proliferation of tumor B cells and regulating immune responses within these tumors. Ultimately, this should lead to deciphering associated vulnerabilities and improve current therapeutic schedules.


Asunto(s)
Glucosa , Glucólisis , Humanos , Glucosa/metabolismo , Animales , Microambiente Tumoral , Linfocitos B/metabolismo , Linfocitos B/inmunología , Linfocitos B/patología , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Vía de Pentosa Fosfato
12.
Front Cell Dev Biol ; 11: 1114458, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36926523

RESUMEN

Cell proliferation and differentiation show a remarkable inverse relationship. The temporal coupling between cell cycle withdrawal and differentiation of stem cells (SCs) is crucial for epithelial tissue growth, homeostasis and regeneration. Proliferation vs. differentiation SC decisions are often controlled by the surrounding microenvironment, of which the basement membrane (BM; a specialized form of extracellular matrix surrounding cells and tissues), is one of its main constituents. Years of research have shown that integrin-mediated SC-BM interactions regulate many aspects of SC biology, including the proliferation-to-differentiation switch. However, these studies have also demonstrated that the SC responses to interactions with the BM are extremely diverse and depend on the cell type and state and on the repertoire of BM components and integrins involved. Here, we show that eliminating integrins from the follicle stem cells (FSCs) of the Drosophila ovary and their undifferentiated progeny increases their proliferation capacity. This results in an excess of various differentiated follicle cell types, demonstrating that cell fate determination can occur in the absence of integrins. Because these phenotypes are similar to those found in ovaries with decreased laminin levels, our results point to a role for the integrin-mediated cell-BM interactions in the control of epithelial cell division and subsequent differentiation. Finally, we show that integrins regulate proliferation by restraining the activity of the Notch/Delta pathway during early oogenesis. Our work increases our knowledge of the effects of cell-BM interactions in different SC types and should help improve our understanding of the biology of SCs and exploit their therapeutic potential.

13.
J Clin Immunol ; 32(6): 1324-31, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22836657

RESUMEN

PURPOSE: Recently, human cytomegalovirus (HCMV) UL128-131 locus gene products have been found to be associated with glycoprotein H (gH) and glycoprotein L (gL) to form a pentameric glycoprotein complex gH/gL/pUL128-130-131, which is present in the virus envelope and elicits production of neutralizing antibodies. Purpose of this study was to verify whether in vitro activities of these antibodies may correlate with protection in vivo. METHODS: By using potently neutralizing human monoclonal antibodies (mAbs) targeting 10 different epitopes of the pentameric complex, a competitive ELISA assay was developed, in which the pentamer bound to the solid-phase was reacted competitively with human sera and murinized human mAbs. In addition, inhibition of virus spreading (plaque formation and leukocyte transfer) by neutralizing human mAbs and sera was investigated. RESULTS: In the absence of any reactivity of sera from HCMV-seronegative subjects, antibodies to all 10 epitopes were detected in HCMV-seropositive individuals. During primary HCMV infection in pregnancy antibodies to some epitopes showed a trend towards an earlier appearance in mothers not transmitting the virus to the fetus as compared to transmitting mothers. In addition, the activity of neutralizing human mAbs and sera in blocking virus cell-to-cell spreading and virus transfer to leukocytes from infected endothelial cells was shown to develop during the convalescent phase of primary infection. CONCLUSIONS: Dissection of the neutralizing/inhibiting activities of human sera may be helpful in the study of their protective role in vivo. In particular, neutralizing antibodies to the pentamer may be a surrogate marker of protection in vivo.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Infecciones por Citomegalovirus/inmunología , Citomegalovirus/inmunología , Glicoproteínas de Membrana/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas Virales/inmunología , Anticuerpos Monoclonales/sangre , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Unión Competitiva , Biomarcadores/sangre , Técnicas de Cocultivo , Infecciones por Citomegalovirus/transmisión , Infecciones por Citomegalovirus/virología , Células Endoteliales/inmunología , Células Endoteliales/virología , Ensayo de Inmunoadsorción Enzimática , Epítopos/genética , Epítopos/inmunología , Femenino , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Leucocitos/inmunología , Leucocitos/virología , Glicoproteínas de Membrana/genética , Pruebas de Neutralización , Embarazo , Multimerización de Proteína , Proteínas del Envoltorio Viral/genética , Ensayo de Placa Viral , Proteínas Virales/genética
14.
Brain Sci ; 12(7)2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35884711

RESUMEN

The locus coeruleus norepinephrine (LC-NE) system modulates many visceral and cognitive functions, while LC-NE dysfunction leads to neurological and neurodegenerative conditions such as sleep disorders, depression, ADHD, or Alzheimer's disease. Innovative viral-vector and gene-engineering technology combined with the availability of cell-specific promoters enabled regional targeting and selective control over phenotypically specific populations of neurons. We transduced the LC-NE neurons in adult male rats by delivering the canine adenovirus type 2-based vector carrying the NE-specific promoter PRSx8 and a light-sensitive channelrhodopsin-2 receptor (ChR2) directly in the LC or retrogradely from the LC targets. The highest ChR2 expression level was achieved when the virus was delivered medially to the trigeminal pathway and ~100 µm lateral to the LC. The injections close or directly in the LC compromised the tissue integrity and NE cell phenotype. Retrograde labeling was more optimal given the transduction of projection-selective subpopulations. Our results highlight a limited inference of ChR2 expression from representative cases to the entire population of targeted cells. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. The actual fraction of manipulated neurons appears most essential for an adequate interpretation of the study outcome. Thus, besides the cell-type specificity and the transduction efficiency, the between-subject variability in the proportion of the remaining viral-transduced targeted cell population must be considered in any functional connectivity study.

15.
Glycoconj J ; 27(5): 501-13, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20524062

RESUMEN

The dense glycan shield on the surface of human immunodeficiency virus type 1 (HIV-1) gp120 masks conserved protein epitopes and facilitates virus entry via interaction to glycan binding proteins on susceptible host cells. The broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose oligosaccharides on the gp120 subunit of HIV-1 Env protein. This oligomannose epitope is currently being considered for the design of a synthetic vaccine. The cluster nature of the 2G12 epitope suggests that a multivalent antigen presentation is important to develop a carbohydrate-based vaccine candidate. In this work we describe the development of neoglycoconjugates displaying clustered HIV-1 related oligomannose carbohydrates. We exploited flexible polyamidoamine (PAMAM) scaffold to generate four- and eight-valent sugar clusters of HIV-1-related oligomannose antigens Man(4), Man(6) and Man(9). The multivalent presentation of oligomannoses increased the avidity of Man(4) and Man(9) to 2G12. The synthetic glycodendrons were then covalently coupled to the protein carrier CRM(197), formulated with the adjuvant MF59, and used to immunize two animal species. Oligomannose-specific IgG antibodies were generated; however, the antisera failed to recognize recombinant HIV-1 gp120 proteins. We conclude that further structural vaccinology work is needed to identify an antigen presentation that closely matches in vivo the structure of the epitope mapped by 2G12.


Asunto(s)
Glicoconjugados/inmunología , Antígenos VIH/química , VIH-1/inmunología , Mananos/inmunología , Proteínas Bacterianas/química , Conformación de Carbohidratos , Secuencia de Carbohidratos , Glicoconjugados/síntesis química , Glicoconjugados/química , Antígenos VIH/inmunología , VIH-1/metabolismo , Humanos , Masculino , Mananos/química , Datos de Secuencia Molecular
16.
Curr Opin Immunol ; 65: 102-106, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-33289646

RESUMEN

Life expectancy has grown tremendously. This incredible achievement for mankind has been obtained mostly thanks to three pillars: hygiene, antibiotics and vaccines. They represent one of the most effective forms of medical intervention. From Jenner's work to new vaccines, immunization has reduced the consequences of infectious diseases. In the last years antimicrobial resistance (AMR) as well as emerging infectious diseases have been rated as major threats for our society, as their toll is forecasted to drastically impinge on human health and economies. Indeed, recently, the whole world has experienced such problems because of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of Covid-19. Herein, we propose an excursus through the three main pillars (hygiene, antibiotics and vaccination) that contributed to improving life expectancy, their clinical and economic impact and the role of vaccines to fight AMR-related diseases and emerging infectious diseases like Covid-19.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19/prevención & control , Enfermedades Transmisibles Emergentes/prevención & control , Farmacorresistencia Microbiana , Vacunas , Antibacterianos/uso terapéutico , COVID-19/epidemiología , COVID-19/inmunología , Humanos , Higiene , Pandemias/prevención & control , SARS-CoV-2/inmunología , Vacunación
17.
Cell Death Differ ; 27(1): 310-328, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31142807

RESUMEN

The assembly and function of the primary cilium depends on multimolecular intraflagellar transport (IFT) complexes that shuttle their cargo along the axonemal microtubules through their interaction with molecular motors. The IFT system has been moreover recently implicated in a reciprocal interplay between autophagy and ciliogenesis. We have previously reported that IFT20 and other components of the IFT complexes participate in the assembly of the immune synapse in the non-ciliated T cell, suggesting that other cellular processes regulated by the IFT system in ciliated cells, including autophagy, may be shared by cells lacking a cilium. Starting from the observation of a defect in autophagic clearance and an accumulation of lipid droplets in IFT20-deficient T cells, we show that IFT20 is required for lysosome biogenesis and function by controlling the lysosomal targeting of acid hydrolases. This function involves its ability to regulate the retrograde traffic of the cation-independent mannose-6-phosphate receptor (CI-MPR) to the trans-Golgi network, which is achieved by coupling recycling CI-MPRs to the microtubule motor dynein. Consistent with the lysosomal defect, an upregulation of the TFEB-dependent expression of the lysosomal gene network can be observed in IFT20-deficient cells, which is associated with defective tonic T-cell antigen receptor signaling and mTOR activity. We additionally show that the lysosome-related function of IFT20 extends to non-ciliated cells other than T cells, as well as to ciliated cells. Our findings provide the first evidence that a component of the IFT system that controls ciliogenesis is implicated in the biogenesis of lysosomes.


Asunto(s)
Proteínas Portadoras/fisiología , Lisosomas/enzimología , Péptido Hidrolasas/metabolismo , Autofagia , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Línea Celular , Cilios , Dineínas/metabolismo , Humanos , Células Jurkat , Lisosomas/metabolismo , Lisosomas/ultraestructura , Biogénesis de Organelos , Transporte de Proteínas , Receptor IGF Tipo 2/metabolismo , Linfocitos T/metabolismo , Red trans-Golgi/metabolismo
18.
Sci Signal ; 13(631)2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32398348

RESUMEN

Understanding the costimulatory signaling that enhances the activity of cytotoxic T cells (CTLs) could identify potential targets for immunotherapy. Here, we report that CD2 costimulation plays a critical role in target cell killing by freshly isolated human CD8+ T cells, which represent a challenging but valuable model to gain insight into CTL biology. We found that CD2 stimulation critically enhanced signaling by the T cell receptor in the formation of functional immune synapses by promoting the polarization of lytic granules toward the microtubule-organizing center (MTOC). To gain insight into the underlying mechanism, we explored the CD2 signaling network by phosphoproteomics, which revealed 616 CD2-regulated phosphorylation events in 373 proteins implicated in the regulation of vesicular trafficking, cytoskeletal organization, autophagy, and metabolism. Signaling by the master metabolic regulator AMP-activated protein kinase (AMPK) was a critical node in the CD2 network, which promoted granule polarization toward the MTOC in CD8+ T cells. Granule trafficking was driven by active AMPK enriched on adjacent lysosomes, revealing previously uncharacterized signaling cross-talk between vesicular compartments in CD8+ T cells. Our results thus establish CD2 signaling as key for mediating cytotoxic killing and granule polarization in freshly isolated CD8+ T cells and strengthen the rationale to choose CD2 and AMPK as therapeutic targets to enhance CTL activity.


Asunto(s)
Proteínas Quinasas Activadas por AMP/inmunología , Antígenos CD2/inmunología , Fosfoproteínas/inmunología , Vesículas Secretoras/inmunología , Transducción de Señal/inmunología , Linfocitos T Citotóxicos/inmunología , Humanos , Fosforilación/inmunología , Proteómica
19.
Vaccines (Basel) ; 7(3)2019 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-31336680

RESUMEN

In the 1970s-1980s, a striking increase in the number of disseminated human cytomegalovirus (HCMV) infections occurred in immunosuppressed patient populations. Autopsy findings documented the in vivo disseminated infection (besides fibroblasts) of epithelial cells, endothelial cells, and polymorphonuclear leukocytes. As a result, multiple diagnostic assays, such as quantification of HCMV antigenemia (pp65), viremia (infectious virus), and DNAemia (HCMV DNA) in patient blood, were developed. In vitro experiments showed that only low passage or endothelial cell-passaged clinical isolates, and not laboratory-adapted strains, could reproduce both HCMV leuko- and endothelial cell-tropism, which were found through genetic analysis to require the three viral genes UL128, UL130, and UL131 of the HCMV UL128 locus (UL128L). Products of this locus, together with gH/gL, were shown to form the gH/gL/pUL128L pentamer complex (PC) required for infection of epithelial cells/endothelial cells, whereas gH/gL and gO form the gH/gL/gO trimer complex (TC) required for infection of all cell types. In 2016, following previous work, a receptor for the TC that mediates entry into fibroblasts was identified as PDGFRα, while in 2018, a receptor for the PC that mediates entry into endothelial/epithelial cells was identified as neuropilin2 (Nrp2). Furthermore, the olfactory receptor family member OR14I1 was recently identified as a possible additional receptor for the PC in epithelial cells. Thus, current data support two models of viral entry: (i) in fibroblasts, following interaction of PDGFRα with TC, the latter activates gB to fuse the virus envelope with the cell membrane, whereas (ii) in epithelial cells/endothelial cells, interaction of Nrp2 (and OR14I1) with PC promotes endocytosis of virus particles, followed by gB activation by gH/gL/gO (or gH/gL) and final low-pH entry into the cell.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA